RESUMO
Jasmonate (JA)-induced plant senescence has been mainly studied with a dark/starvation-promoted system using detached leaves; yet, the induction of whole-plant senescence by JA remains largely unclear. This work reports the finding of a JA-induced whole-plant senescence of tobacco under light/non-starvation conditions and the investigation of underlying regulations. Methyl jasmonate (MeJA) treatment induces the whole-plant senescence of tobacco in a light-intensity-dependent manner, which is suppressed by silencing of NtCOI1 that encodes the receptor protein of JA-Ile (the bioactive derivative of JA). MeJA treatment could induce the senescence-specific cysteine protease gene SAG12 and another cysteine protease gene SAG-L1 to high expression levels in the detached leaf patches under dark conditions but failed to induce their expression in tobacco whole plants under light conditions. Furthermore, MeJA attenuates the RuBisCo activase (RCA) level in the detached leaves but has no effect on this protein in the whole plant under light conditions. A genome-wide transcriptional assay also supports the presence of a differential regulatory pattern of senescence-related genes during MeJA-induced whole-plant senescence under non-starvation conditions and results in the finding of a chlorophylase activity increase in this process. We also observed that the MeJA-induced senescence of tobacco whole plants is reversible, which is accompanied by a structural change of chloroplasts. This work provides novel insights into JA-induced plant senescence under non-starvation conditions and is helpful to dissect the JA-synchronized process of whole-plant senescence.
Assuntos
Ciclopentanos/efeitos adversos , Nicotiana/genética , Nicotiana/fisiologia , Oxilipinas/efeitos adversos , Senescência Vegetal/efeitos dos fármacos , Senescência Vegetal/genética , Adaptação Ocular/genética , Adaptação Ocular/fisiologia , Adaptação à Escuridão/genética , Adaptação à Escuridão/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de PlantasRESUMO
BACKGROUND: Mitomycin (MMC) has been frequently used as the compound for intravesical treatment. The relatively new pyrimidine analog gemcitabine (GEM) has exhibited anticancer effect on various solid cancers, such as the advanced bladder cancer. In this study, the GEM and MMC in treating non-muscle invasive bladder cancer (NMIBC) cases was compared through systemic review. METHODS: In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, the electronic databases, including Embase, PubMed, Chinese biomedicine literature database, the Cochrane Library, the National Institute for Health and Clinical Excellence, NHS Evidence, Chinese technological periodical full-text database, and Chinese periodical full-text database, were systemically reviewed from inception to October 2018. Then, the RevMan 5.0 software was applied for data analysis. Five randomized controlled trials (RCTs) involving a total of 335 patients were included. RESULTS: For MMC group, the recurrence rate in the mitomycin arm increased compared with that in GEM group (OR = 0.44 95% CI [0.24, 0.78]), and the difference was statistically significant between the two groups. GEM was associated with reduced incidence of chemical cystitis compared with that of MMC (OR = 0.23 95% CI [0.12, 0.44]). Differences in hematuria (OR = 0.46 95% CI [0.16, 1.31]), skin reaction (OR = 0.49 95% CI [0.14, 1.70]) and liver and kidney function damage (OR = 0.51 95% CI [0.09, 2.85]) displayed no statistical significance between the two groups. CONCLUSION: Findings in our study demonstrate the superior efficacy of GEM over MMC in reducing the relapse rate among NMIBC patients following transurethral resection (TUR). In addition, GEM is associated with reduced local toxic effects on the bladder compared with those of MMC. However, more future studies are needed to examine GEM safety when used as the monotherapy or polytherapy for bladder patients. More RCTs with high quality are also required to validate our findings due to the limitations of the current meta-analysis.
Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Mitomicina/administração & dosagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Desoxicitidina/administração & dosagem , Humanos , Invasividade Neoplásica , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias da Bexiga Urinária/patologia , GencitabinaRESUMO
Duckweed is a kind of floating aquatic plant and increasing its starch production is favorable for bioenergy. In this study, we found that starch biosynthesis was greatly promoted by the supplement of nickel ion (Ni2+) through the comparison of other different ions. The starch content in duckweed was increased by nearly eightfold when duckweed was treated with 20 µM Ni2+. The analysis of paraffin sections visually found that starch granules were more complete and dark blue in Ni2+ treated duckweed than the control. Quantitative real-time PCR demonstrated that the expressions of starch synthesis-related enzymes were up-regulated in Ni2+ treated duckweed. Further analysis revealed that the accumulation of Ni2+ in duckweed effectively increased the activity of urease, which compensated for the deficiency of certain decrease in biomass and accelerated biosynthesis of the starch. Thus, our results represent another strategy to improve starch production of duckweed.
Assuntos
Araceae , Amido , Araceae/metabolismo , Biomassa , Metabolismo dos Carboidratos , Níquel , Amido/metabolismoRESUMO
The geographic routing protocol only requires the location information of local nodes for routing decisions, and is considered very efficient in multi-hop wireless sensor networks. However, in dynamic wireless sensor networks, it increases the routing overhead while obtaining the location information of destination nodes by using a location server algorithm. In addition, the routing void problem and location inaccuracy problem also occur in geographic routing. To solve these problems, a novel fuzzy logic-based geographic routing protocol (FLGR) is proposed. The selection criteria and parameters for the assessment of the next forwarding node are also proposed. In FLGR protocol, the next forward node can be selected based on the fuzzy location region of the destination node. Finally, the feasibility of the FLGR forwarding mode is verified and the performance of FLGR protocol is analyzed via simulation. Simulation results show that the proposed FLGR forwarding mode can effectively avoid the routing void problem. Compared with existing protocols, the FLGR protocol has lower routing overhead, and a higher packet delivery rate in a sparse network.
RESUMO
Two unlinked semi-dominant loci, A (NIC1) and B (NIC2), control nicotine and related alkaloid biosynthesis in Burley tobaccos. Mutations in either or both loci (nic1 and nic2) lead to low nicotine phenotypes with altered environmental stress responses. Here we show that the transcripts derived from the pathogenesis-related (PR) protein gene PR3b are alternatively spliced to a greater extent in the nic1 and nic2 mutants of Burley 21 tobacco and the nic1nic2 double mutant. The alternative splicing results in a deletion of 65 nucleotides and introduces a premature stop codon into the coding region of PR3b that leads to a significant reduction of PR3b specific chitinase activity. Assays of PR3b splicing in F2 individuals derived from crosses between nic1 and nic2 mutants and wild-type plants showed that the splicing phenotype is controlled by the NIC1 and NIC2 loci, even though NIC1 and NIC2 are unlinked loci. Moreover, the transcriptional analyses showed that the splicing patterns of PR3b in the low-nicotine mutants were differentially regulated by jasmonate (JA) and ethylene (ET). These data suggest that the NIC1 and NIC2 loci display differential roles in regulating the alternative splicing of PR3b in Burley 21. The findings in this study have provided valuable information for extending our understanding of the broader effects of the low-nicotine mutants of Burley 21 and the mechanism by which JA and ET signalling pathways post-transcriptionally regulate the activity of PR3b protein.
Assuntos
Processamento Alternativo , Quitinases/metabolismo , Genes de Plantas/fisiologia , Nicotiana/metabolismo , Nicotina/metabolismo , Quitinases/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Genes de Plantas/genética , Mutação/genética , Mutação/fisiologia , Nicotina/genética , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais/fisiologia , Nicotiana/genéticaRESUMO
Introduction: Although sertraline has been widely used for chronic prostatitis (CP), the mechanisms are unclear. Herein, we explored the mechanisms of sertraline in treating CP. Methods: Network pharmacology methods were used to explore the potential targets and molecular mechanisms. LPS was used to stimulate RWPE-1 cells to construct an in vitro model of CP. An experimental autoimmune prostatitis (EAP) mice model was built. CCK-8 assay, EdU assay, BrdU detection, and Tunel assay were performed to evaluate the proliferation and apoptosis process of cells or tissues, respectively. DCFH-DA and Fluo-4 fluorescence probes were used to detect intracellular ROS and calcium concentrations. Von Frey filaments and open-field tests were utilized to evaluate pain response and depressive-like behavior of mice. Histopathology was evaluated through hematoxylin and eosin staining. RT-qPCR, Western blot, immunofluorescence, and immunohistochemistry were utilized to evaluate the transcription, expression, and location of related proteins. Molecular dynamics (MD) simulation and surface plasmon resonance (SPR) assay were performed to measure the binding capacity of sertraline and related proteins. Results: Through a network pharmacology analysis, 27 potential targets of sertraline for CP were obtained, and 5 key targets (CHRM1, ADRA1B, HTR2B, HTR2A, and TRPV1) were finally identified. Functional experiments suggested that TRPV1 was involved in the proliferation, apoptosis inhibition, and ROS production of LPS-induced RWPE-1 cells. In vitro experiments showed that sertraline significantly inhibited cell proliferation, ROS generation, and transcription of inflammation cytokines of LPS-induced RWPE-1 cells. Additionally, sertraline markedly promoted the apoptosis level of LPS-stimulated RWPE-1 cells and elevated the expression level of BAX while reducing the expression levels of Bcl2 and Caspase-3. MD simulation and SPR assay confirmed the direct binding of sertraline to TRPV1. Moreover, sertraline significantly down-regulated the expression level of TRPV1 and inhibited calcium influx of LPS-induced RWPE-1 cells. TRPV1 agonist (Capsaicin) significantly restored the effects on proliferation, apoptosis, ROS production, and calcium influx of sertraline on LPS-induced RWPE-1 cells. Mice experiments demonstrated that sertraline treatment could reduce pain response, improve depression-like symptoms, and relieve local prostate inflammation of EAP mice, as well as down-regulated the expression level of TRPV1, inhibit the proliferation, and promote apoptosis of prostate tissues in EAP mice. Discussion: The results revealed the anti-inflammatory effect of sertraline for RWPE-1 cells and EAP mice, and the potential mechanism was regulating the TRPV1 channel. It indicated that sertraline might serve as a complementary anti-inflammatory agent for CP.
RESUMO
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is able to infect many economically important crops and thus causes substantial losses in the global agricultural economy. Pst DC3000 can be divided into virulent lines and avirulent lines. For instance, the pathogen effector avrRPM1 of avirulent line Pst-avrRpm1 (Pst DC3000 avrRpm1) can be recognized and detoxified by the plant. To further compare the pathogenicity mechanisms of virulent and avirulent Pst DC3000, a comprehensive analysis of the acetylome and succinylome in Arabidopsis thaliana was conducted following infection with virulent line Pst DC3000 and avirulent line Pst-avrRpm1. In this study, a total of 1625 acetylated proteins encompassing 3423 distinct acetylation sites were successfully identified. Additionally, 229 succinylated proteins with 527 unique succinylation sites were detected. A comparison of these modification profiles between plants infected with Pst DC3000 and Pst-avrRpm1 revealed significant differences. Specifically, modification sites demonstrated inconsistencies, with a variance of up to 10% compared to the control group. Moreover, lysine acetylation (Kac) and lysine succinylation (Ksu) displayed distinct preferences in their modification patterns. Lysine acetylation is observed to exhibit a tendency towards up-regulation in Arabidopsis infected with Pst-avrRpm1. Conversely, the disparity in the number of Ksu up-regulated and down-regulated sites was not as pronounced. Motif enrichment analysis disclosed that acetylation modification sequences are relatively conserved, and regions rich in polar acidic/basic and non-polar hydrophobic amino acids are hotspots for acetylation modifications. Functional enrichment analysis indicated that the differentially modified proteins are primarily enriched in the photosynthesis pathway, particularly in relation to light-capturing proteins. In conclusion, this study provides an insightful profile of the lysine acetylome and succinylome in A. thaliana infected with virulent and avirulent lines of Pst DC3000. Our findings revealed the potential impact of these post-translational modifications (PTMs) on the physiological functions of the host plant during pathogen infection. This study offers valuable insights into the complex interactions between plant pathogens and their hosts, laying the groundwork for future research on disease resistance and pathogenesis mechanisms.
Assuntos
Arabidopsis , Lisina , Doenças das Plantas , Proteoma , Pseudomonas syringae , Acetilação , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/metabolismo , Pseudomonas syringae/genética , Virulência/genéticaRESUMO
Objective: This study aims to investigate the impact of vagus nerve stimulation (VNS) on the connectivity and small-world metrics of brain functional networks during seizure periods. Methods: Ten refractory epilepsy patients underwent video encephalographic monitoring before and after VNS treatment. The 2-min electroencephalogram segment containing the ictal was selected for each participant, resulting in a total of 20 min of seizure data. The weighted phase lag index (wPLI) and small-world metrics were calculated for the whole frequency band and different frequency bands (delta, theta, alpha, beta, and gamma). Finally, the relevant metrics were statistically analyzed, and the false discovery rate was used to correct for differences after multiple comparisons. Results: In the whole band, the wPLI was notably enhanced, and the network metrics, including degree (D), clustering coefficient (CC), and global efficiency (GE), increased, while characteristic path length (CPL) decreased (P < 0.01). In different frequency bands, the wPLI between the parieto-occipital and frontal regions was significantly strengthened in the delta and beta bands, while the wPLI within the frontal region and between the frontal and parieto-occipital regions were significantly reduced in the beta and gamma bands (P < 0.01). In the low-frequency band (<13 Hz), the small-world metrics demonstrated significantly increased CC, D, and GE, with a significantly decreased CPL, indicating a more efficient network organization. In contrast, in the gamma band, the GE decreased, and the CPL increased, suggesting a shift toward less efficient network organization. Conclusion: VNS treatment can significantly change the wPLI and small-world metrics. These findings contribute to a deeper understanding of the impact of VNS therapy on brain networks and provide objective indicators for evaluating the efficacy of VNS.
RESUMO
In this study, a novel and green method combining plasma with peracetic acid (plasma/PAA) was developed to simultaneously remove antibiotics and antibiotic resistance genes (ARGs) in wastewater, which achieves significant synergistic effects in the removal efficiencies and energy yield. At a plasma current of 2.6 A and PAA dosage of 10 mg/L, the removal efficiencies of most detected antibiotics in real wastewater exceeded 90 % in 2 min, with the ARG removal efficiencies ranging from 6.3 % to 75.2 %. The synergistic effects of plasma and PAA could be associated with the motivated production of reactive species (including â¢OH, â¢CH3, 1O2, ONOO-, â¢O2- and NOâ¢), which decomposed antibiotics, killed host bacteria, and inhibited ARG conjugative transfer. In addition, plasma/PAA also changed the contributions and abundances of ARG host bacteria and downregulated the corresponding genes of two-component regulatory systems, thus reducing ARG propagation. Moreover, the weak correlations between the removal of antibiotics and ARGs highlights the commendable performance of plasma/PAA in the simultaneous removal of antibiotics and ARGs. Therefore, this study affords an innovative and effective avenue to remove antibiotics and ARGs, which relies on the synergistic mechanisms of plasma and PAA and the simultaneous removal mechanisms of antibiotics and ARGs in wastewater.
Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Ácido Peracético/farmacologia , Eliminação de Resíduos Líquidos/métodos , Genes Bacterianos , Bactérias/genética , Resistência Microbiana a Medicamentos/genéticaRESUMO
Objective: The study aimed to find the difference in functional network topology on interictal electroencephalographic (EEG) between patients with drug-resistant epilepsy (DRE) and healthy people. Methods: We retrospectively analyzed the medical records as well as EEG data of ten patients with DRE and recruited five sex-age-matched healthy controls (HC group). Each participant remained awake while undergoing video-electroencephalography (vEEG) monitoring. After excluding data that contained abnormal discharges, we screened EEG segments that were free of artifacts and put them together into 20-min segments. The screened data was bandpass filtered to different frequency bands (delta, theta, alpha, beta, and gamma). The weighted phase lag index (wPLI) and the network properties were calculated to evaluate changes in the topology of the functional network. Finally, the results were statistically analyzed, and the false discovery rate (FDR) was used to correct for differences after multiple comparisons. Results: In the full frequency band (0.5-45 Hz), the functional connectivity in the DRE group during the interictal period was significantly lower than that in the HC group (p < 0.05). Compared to the HC group, in the full frequency band, the DRE group exhibited significantly decreased clustering coefficient (CC), node degree (D), and global efficiency (GE), while the characteristic path length (CPL) significantly increased (p < 0.05). In the sub-frequency bands, the functional connectivity of the DRE group was significantly lower than that of the HC group in the delta band but higher in the alpha, beta, and gamma bands (p < 0.05). The statistical results of network properties revealed that in the delta band, the DRE group had significantly decreased values for D, CC, and GE, but in the alpha, beta, and gamma bands, these values were significantly increased (p < 0.05). Additionally, the CPL of the DRE group significantly increased in the delta and theta bands but significantly decreased in the alpha, beta, and gamma bands (p < 0.05). Conclusion: The topology structure of the functional network in DRE patients was significantly changed compared with healthy people, which was reflected in different frequency bands. It provided a theoretical basis for understanding the pathological network alterations of DRE.
RESUMO
Increasing evidence has confirmed that circular RNAs (circRNAs) are involved in regulating the development and progression of various tumors. The aim of this study was to examine the effect of circFBXW7 on the progression of glioma and to determine its underlying mechanism. qRT-PCR was performed to measure the expression of circFBXW7, miR-23a-3p, and PTEN in tissues and cell lines of glioma. The proliferation ability of glioma cells was examined using the CCK-8 assay. Glioma cell migration and invasion capacity were detected using Transwell assays. The dual-luciferase reporter gene assay was employed to examine the correlation between miR-23a-3p and circFBXW7 or PTEN. The expression levels of the related genes were determined using western blotting analysis. A glioma xenograft tumor model was employed to evaluate the functional roles of circFBXW7 in vivo. CircFBXW7 was found to be aberrantly downregulated in glioma tumor tissues and cell lines. Overexpression of circFBXW7 was found to significantly inhibit the proliferation, migration and invasion ability of the glioma cells. Moreover, bioinformatic analysis and dual-luciferase reporter assays confirmed that circFBXW7 can directly target miR-23a-3p, which then blocks the binding of miR-23a-3p to the 3' un-translated region (UTR) of PTEN. Mechanically, circFBXW7 suppresses cell proliferation and metastasis in glioma by sponging miR-23a-3p, resulting in elevated PTEN expression. In addition, in vivo experiments also confirmed that circFBXW7 overexpression effectively halts tumor growth and metastasis. Consistent with the in vitro observations, circFBXW7 overexpression significantly decreased miR-23a-3p, Ki-67, and N-cadherin, as well as increased PTEN and E-cadherin levels. Our results revealed that circFBXW7 exhibits antiproliferative and antimetastasis activities via sponging miR-23a-3p to elevate PTEN expression in glioma, which may offer a novel target for clinical therapy and diagnosis of glioma.
Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Glioma/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , RNA Circular/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , RNA Circular/genética , Transdução de Sinais/fisiologiaRESUMO
Basic helix-loop-helix (bHLH) transcription factor MYC2 regulates plant growth and development in many aspects through the jasmonic acid (JA) signaling pathway, while the role of MYC2 in plant carbohydrate metabolism has not been reported. Here, we generated NtMYC2a-overexpressing (NtMYC2a-OE) and RNA-interference-mediated knockdown (NtMYC2a-RI) transgenic plants of tobacco (Nicotiana tabacum L. cv. TN90) to investigate the role of NtMYC2a in carbohydrate metabolism and pollen development. Results showed that NtMYC2a regulates the starch accumulation and the starch-sugar conversion of floral organs, especially in pollen. The RT-qPCR analysis showed that the expression of starch-metabolic-related genes, AGPs, SS2 and BAM1, were regulated by NtMYC2a in the pollen grain, anther wall and ovary of tobacco plants. The process of pollen maturation was accelerated in NtMYC2a-OE plants and was delayed in NtMYC2a-RI plants, but the manipulation of NtMYC2a expression did not abolish the pollen fertility of the transgenic plants. Intriguingly, overexpression of NtMYC2a also enhanced the soluble carbohydrate accumulation in tobacco ovaries. Overall, our results demonstrated that the bHLH transcription factor NtMYC2a plays an important role in regulating the carbohydrate metabolism during pollen maturation in tobacco.
RESUMO
Cytosolic Ca2+ increases in response to many stimuli. CAX1 (H+/Ca2+ exchanger 1) maintains calcium homeostasis by transporting calcium from the cytosol to vacuoles. Here, we determined that the cax1 mutant exhibits enhanced resistance against both an avirulent biotrophic pathogen Pst-avrRpm1 (Pseudomonas syringae pv tomato DC3000 avrRpm1), and a necrotrophic pathogen, B. cinerea (Botrytis cinerea). The defense hormone SA (salicylic acid) and phytoalexin scopoletin, which fight against biotrophs and necrotrophs respectively, accumulated more in cax1 than wild-type. Moreover, the cax1 mutant exhibited early senescence after exogenous Ca2+ application. The accelerated senescence in the cax1 mutant was dependent on SID2 (salicylic acid induction deficient 2) but not on NPR1 (nonexpressor of pathogenesis-related genes1). Additionally, the introduction of CAX1 into the cax1 mutant resulted in phenotypes similar to that of wild-type in terms of Ca2+-conditioned senescence and Pst-avrRpm1 and B. cinerea infections. However, disruption of CAX3, the homolog of CAX1, did not produce an obvious phenotype. Moreover, exogenous Ca2+ application on plants resulted in increased resistance to both Pst-avrRpm1 and B. cinerea. Therefore, we conclude that the disruption of CAX1, but not CAX3, causes the activation of pathogen defense mechanisms, probably through the manipulation of calcium homeostasis or other signals.
Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Resistência à Doença , Envelhecimento , Antiporters/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Prótons , Reação em Cadeia da Polimerase em Tempo Real , Ácido Salicílico/metabolismo , Escopoletina/metabolismoRESUMO
Plants growing in natural habitats have evolved a wide range of mechanisms to copy with environmental challenging, including biotic and abiotic stresses. Abiotic stresses-induced increases in Abscisic acid (ABA) levels in plants suffering from stresses, including drought, cold or heat stress. To explore the function of the core components in ABA signaling, we used the overexpression of RCARs transgenic plants to expose in heat or cold stress. In this study, overexpression of RCAR12 or RCAR13 (R12-OE or R13-OE) transgenic plants had higher germination and survival rate than the wild-type (WT) Arabidopsis, indicating that they are both positively responsive to the high temperature. And the heat shock genes HSP18.2 and HSP70 were significantly induced by RCAR12 or RCAR13. Further, the results inferred that the over-expression of RCAR12 or RCAR13 could tolerance the cold stress, through induction CBFs expressions, the cold-responsive genes when plants were challenged the cold tress. And when complementation of RCAR12 to the 1124 mutant (R12:1124), the results indicated that RCAR12 could recover the insensitivity of 1124 to heat and cold stresses. Hence, we propose that RCAR12 and RCAR13, the ABA receptors, may play the positive roles in regulating the extreme temperature, including cold and high temperature in Arabidopsis.
Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Temperatura Alta , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Plântula/fisiologiaRESUMO
Nicotine is a secondary metabolite that is important to the defense system and commercial quality of tobacco (Nicotiana tabacum L.). Jasmonate and its derivatives (JAs) are phytohormone regulators of nicotine formation; however, the underlying molecular mechanism of this process remains largely unclear. Owing to the amphitetraploid origin of N. tabacum, research on screening and identification of nicotine-synthetic mutants is relatively scarce. Here, we describe a method based on JA-sensitivity for screening nicotine mutants from an activation-tagged population of tobacco. In this approach, the mutants were first screened for abnormal JA responses in seed germination and root elongation, and then the levels of nicotine synthesis and expression of nicotine synthetic genes in the mutants with altered JA-response were measured to determine the nicotine-synthetic mutants. We successfully obtained five mutants that maintained stable nicotine contents and JA responses for three generations. This method is simple, effective and low-cost, and the finding of transcriptional changes of nicotine synthetic genes in the mutants shows potentials for identifying novel regulators involved in JA-regulated nicotine biosynthesis.
RESUMO
OBJECTIVE: To analyze the clinical characteristics, diagonsis and treatment of patients with hemophilia in Gansu province of China. METHODS: The clinical data of 223 cases of hemophilia in our center between January 2010 and May 2015 were collected and analyzed retrospectively, these 223 cases of hemophilia were from 14 cities in Gansu and neighboring provinces, including 203 cases of hemophili A (HA) and 20 cases of hemophili B (HB), among them 222 cases were male, only 1 female(HA), 177 cases were from Rural areas (79.4%). RESULTS: The median age of first bleeding was 2 years old, and the average age of confirmed as hemophilia was 5.6±6.5 years, the delayed time of diagnoses of HA and HB was 2.50±4.91 and 2.07±4.76 years, respetively, among all the patients 168 caese complicated with joint hemorrhage (75.3%), 123 cases with joint deformities (55.2%). 91.6% of the patients were treated according to demand, the HBV and HCV infection rates were 1.7% and 6.2% respectively. The first-visited hospital of 86.9% patients was hospitalized below 3 grade of level, only 15.9% of these patients were considered to diagnose as hemophili. CONCLUSION: The accurate level of diagnosis rate for hemophiliacs in Gansu province is low, the delay time of diagnosis is longer, the ratios of complicated joint hemorrhage, total accumulative joint deformity were high, HCV infection rate is also high.
Assuntos
Hemofilia A , Hemorragia , Pré-Escolar , China , Feminino , Humanos , Masculino , Estudos RetrospectivosRESUMO
OBJECTIVE: To study the immunological characteristics of the spike (S) protein of SARS coronavirus (SARS-CoV) and analyze the feasibility of using this protein as the component for SARS vaccine development. METHODS: The two truncated fragments of S gene were separately cloned into the prokaryotic expression vector pET-15b and expressed in E.coli. The resulting recombinant proteins, rS(a) and rS(b), were purified by affinity chromatography. The full-length S gene was cloned into the eukaryotic expression plasmid pSecTagB to prepare recombinant plasmid pSecS as the DNA vaccine to immunize BALB/c mice for inducing the secretion of anti-SARS-CoV protein. The immunological effect of anti-SARS-CoV antibody was tested with purified rS(a) and rS(b) proteins by enzyme-linked immunosorbent assay (ELISA). RESULTS: Both the truncated recombinant proteins were expressed in soluble forms and reacted specifically with the sera from immunized pSecS mice and clinically diagnosed SARS patients. The prokaryotically expressed recombinant truncated S protein had similar antigenicity with SARS-CoV S protein. CONCLUSION: The recombinant protein could be used as an antigen for detecting the serum of SARS CoV-infected patients. The SARS-CoV S gene vaccine could induce the production of specific antibody, which offers clues for the research of SARS DNA vaccine.
Assuntos
Glicoproteínas de Membrana/genética , Células Procarióticas/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Vacinas de DNA/biossíntese , Proteínas do Envelope Viral/genética , Vacinas Virais/biossíntese , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Humanos , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Glicoproteína da Espícula de Coronavírus , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologiaRESUMO
AIM: To express the nucleocapsid (N) protein of SARS coronavirus (SARS-CoV) in E. coli and construct its DNA vaccine. METHODS: The prokaryotic expression vector pQEN containing N gene was constructed and transformed into the E. coli. The recombinant N protein was then expressed and purified by Ni(2+)-NTA affinity resin. In addition, the N gene was cloned into the eukaryotic expression plasmid pSecTagB and the eukaryotic recombinant expression vector pSecN was obtained. The DNA vaccine pSecN was injected to immunize the BALB/c mice to produce the antiserum against N protein of SARS-CoV. Subsequently, the reactivity of the antiserum with recombinant N protein and SARS-CoV particles was assayed by ELISA. RESULTS: Recombinant N protein reacted strongly and specifically with the sera from immunized mice and SARS patients. Similarly, the sera of immunized mice could also react specifically with SARS-CoV particles. CONCLUSION: The recombinant N protein could be used as a good antigen to detect SARS. The DNA vaccine pSecN could also efficiently induce the production of IgG against N protein of SARS-CoV, which offered clues to the development of a potential DNA vaccine.