Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(2): 435-47, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24075010

RESUMO

Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat body for anabolic function and the immune response. Using genetic and biochemical approaches, we find that MEF2 is phosphorylated at a conserved site in healthy flies and promotes expression of lipogenic and glycogenic enzymes. Upon infection, this phosphorylation is lost, and the activity of MEF2 changes--MEF2 now associates with the TATA binding protein to bind a distinct TATA box sequence and promote antimicrobial peptide expression. The loss of phosphorylated MEF2 contributes to loss of anabolic enzyme expression in Gram-negative bacterial infection. MEF2 is thus a critical transcriptional switch in the adult fat body between metabolism and immunity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Fatores de Regulação Miogênica/metabolismo , Sequência de Aminoácidos , Animais , Candida albicans , Proteínas de Drosophila/imunologia , Drosophila melanogaster/microbiologia , Enterobacter cloacae , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Glicogênio/metabolismo , Metabolismo , Mycobacterium marinum , Fatores de Regulação Miogênica/imunologia , Fosforilação , Proteína de Ligação a TATA-Box/metabolismo
2.
EMBO J ; 42(17): e113012, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37409490

RESUMO

Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.


Assuntos
Proteínas Associadas aos Microtúbulos , Esfingomielinas , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Mamíferos
3.
PLoS Pathog ; 18(9): e1010826, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129961

RESUMO

Host behavioural changes are among the most apparent effects of infection. 'Sickness behaviour' can involve a variety of symptoms, including anorexia, depression, and changed activity levels. Here, using a real-time tracking and behavioural profiling platform, we show that in Drosophila melanogaster, several systemic bacterial infections cause significant increases in physical activity, and that the extent of this activity increase is a predictor of survival time in some lethal infections. Using multiple bacteria and D. melanogaster immune and activity mutants, we show that increased activity is driven by at least two different mechanisms. Increased activity after infection with Micrococcus luteus, a Gram-positive bacterium rapidly cleared by the immune response, strictly requires the Toll ligand spätzle. In contrast, increased activity after infection with Francisella novicida, a Gram-negative bacterium that cannot be cleared by the immune response, is entirely independent of both Toll and the parallel IMD pathway. The existence of multiple signalling mechanisms by which bacterial infections drive increases in physical activity implies that this effect may be an important aspect of the host response.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Imunidade Inata , Ligantes
4.
Immunity ; 42(1): 133-44, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601202

RESUMO

Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat storage, systemic activation of JAK-STAT signaling, reduced insulin sensitivity, hyperglycemia, and a shorter lifespan. Drosophila macrophages produced the JAK-STAT-activating cytokine upd3, in a scavenger-receptor (crq) and JNK-dependent manner. Genetic depletion of macrophages or macrophage-specific silencing of upd3 decreased JAK-STAT activation and rescued insulin sensitivity and the lifespan of Drosophila, but did not decrease fat storage. NF-κB signaling made no contribution to the phenotype observed. These results identify an evolutionarily conserved "scavenger receptor-JNK-type 1 cytokine" cassette in macrophages, which controls glucose metabolism and reduces lifespan in Drosophila maintained on a lipid-rich diet via activation of the JAK-STAT pathway.


Assuntos
Senilidade Prematura/imunologia , Proteínas de Drosophila/metabolismo , Drosophila/imunologia , Macrófagos/fisiologia , Obesidade/prevenção & controle , Senilidade Prematura/etiologia , Senilidade Prematura/genética , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Humanos , Inflamação , Resistência à Insulina/genética , Janus Quinases/metabolismo , MAP Quinase Quinase 4/metabolismo , Ativação de Macrófagos/genética , Obesidade/etiologia , RNA Interferente Pequeno/genética , Receptores Depuradores/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341118

RESUMO

Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.


Assuntos
Proteínas de Transporte/imunologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Animais , Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Drosophila melanogaster/genética , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária , Feminino , Regulação da Expressão Gênica , Imunidade Inata/fisiologia , Masculino , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Fatores Sexuais , Transdução de Sinais/fisiologia , Triglicerídeos/metabolismo
6.
Mol Microbiol ; 117(3): 600-609, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34585797

RESUMO

Animal models have played an essential role in understanding the host-pathogen interactions of pathogenic mycobacteria, including the Mycobacterium tuberculosis and emerging nontuberculous mycobacteria (NTM) species such as M. avium and M. abscessus. Drosophila melanogaster has become a well-established model for the study of innate immunity and is increasingly being used as a tool to study host-pathogen interactions, in part due to its genetic tractability. The use of D. melanogaster has led to greater understanding of the role of the innate immune system in response to mycobacterial infection, including in vitro RNAi screens and in vivo studies. These studies have identified processes and host factors involved in mycobacterial infection, such as those required for cellular entry, those required to control or resist non-pathogenic mycobacteria, or factors that become dysregulated as a result of mycobacterial infection. Developments in genetic tools for manipulating mycobacterial genomes will allow for more detailed studies into how specific host and pathogen factors interact with one another by using D. melanogaster; however, the full potential of this model has not yet been reached. Here we provide an overview of how D. melanogaster has been used to study mycobacterial infection and discuss the current gaps in our understanding.


Assuntos
Infecções por Mycobacterium , Mycobacterium tuberculosis , Animais , Drosophila , Drosophila melanogaster , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/genética
7.
Proc Biol Sci ; 289(1974): 20220492, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538789

RESUMO

The activation of the immune system upon infection exerts a huge energetic demand on an individual, likely decreasing available resources for other vital processes, like reproduction. The factors that determine the trade-off between defensive and reproductive traits remain poorly understood. Here, we exploit the experimental tractability of the fruit fly Drosophila melanogaster to systematically assess the impact of immune system activation on pre-copulatory reproductive behaviour. Contrary to expectations, we found that male flies undergoing an immune activation continue to display high levels of courtship and mating success. Similarly, immune-challenged female flies remain highly sexually receptive. By combining behavioural paradigms, a diverse panel of pathogens and genetic strategies to induce the fly immune system, we show that pre-copulatory reproductive behaviours are preserved in infected flies, despite the significant metabolic cost of infection.


Assuntos
Drosophila melanogaster , Comportamento Reprodutivo , Animais , Bactérias , Copulação , Drosophila , Drosophila melanogaster/fisiologia , Feminino , Masculino , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia
8.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33229460

RESUMO

Lysozyme is an important component of the innate immune system. It functions by hydrolyzing the peptidoglycan (PG) layer of bacteria. The human pathogen Listeria monocytogenes is intrinsically lysozyme resistant. The peptidoglycan N-deacetylase PgdA and O-acetyltransferase OatA are two known factors contributing to its lysozyme resistance. Furthermore, it was shown that the absence of components of an ABC transporter, referred to here as EslABC, leads to reduced lysozyme resistance. How its activity is linked to lysozyme resistance is still unknown. To investigate this further, a strain with a deletion in eslB, coding for a membrane component of the ABC transporter, was constructed in L. monocytogenes strain 10403S. The eslB mutant showed a 40-fold reduction in the MIC to lysozyme. Analysis of the PG structure revealed that the eslB mutant produced PG with reduced levels of O-acetylation. Using growth and autolysis assays, we showed that the absence of EslB manifests in a growth defect in media containing high concentrations of sugars and increased endogenous cell lysis. A thinner PG layer produced by the eslB mutant under these growth conditions might explain these phenotypes. Furthermore, the eslB mutant had a noticeable cell division defect and formed elongated cells. Microscopy analysis revealed that an early cell division protein still localized in the eslB mutant, indicating that a downstream process is perturbed. Based on our results, we hypothesize that EslB affects the biosynthesis and modification of the cell wall in L. monocytogenes and is thus important for the maintenance of cell wall integrity.IMPORTANCE The ABC transporter EslABC is associated with the intrinsic lysozyme resistance of Listeria monocytogenes However, the exact role of the transporter in this process and in the physiology of L. monocytogenes is unknown. Using different assays to characterize an eslB deletion strain, we found that the absence of EslB affects not only lysozyme resistance but also endogenous cell lysis, cell wall biosynthesis, cell division, and the ability of the bacterium to grow in media containing high concentrations of sugars. Our results indicate that EslB is, by means of a yet-unknown mechanism, an important determinant for cell wall integrity in L. monocytogenes.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Regulação da Expressão Gênica , Listeria monocytogenes/patogenicidade , Muramidase/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Virulência
9.
Semin Immunol ; 26(4): 310-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24856462

RESUMO

Drosophila melanogaster has emerged as a powerful model to understand innate immune responses to infection (note the 2011 Nobel Prize in Physiology or Medicine), and in recent years this system has begun to inform on the role and regulation of immune responses during tissue injury. Due to the speed and complexity of inflammation signals upon damage, a complete understanding of the immune responses during repair requires a combination of live imaging at high temporal resolution and genetic dissection, which is possible in a number of different injury models in the fly. Here we discuss the range of wound-induced immune responses that can be modeled in flies. These wound models have revealed the most immediate signals leading to immune cell activation, and highlighted a number of complex signaling cascades required for subsequent injury-associated inflammatory responses. What has emerged from this system are a host of both local acting signals, and surprisingly, more systemic tissue repair immune responses.


Assuntos
Drosophila melanogaster/imunologia , Drosophila melanogaster/fisiologia , Animais , Imunidade Celular , Imunidade Humoral , Inflamação/imunologia , Modelos Animais , Cicatrização
10.
Proc Natl Acad Sci U S A ; 112(44): E6000-9, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26489648

RESUMO

Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer's and Parkinson's. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson's disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment.


Assuntos
Mitocôndrias/metabolismo , Neurônios Motores/citologia , Transdução de Sinais , Animais , Drosophila
11.
Elife ; 122024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189792

RESUMO

Environmental factors, infection, or injury can cause oxidative stress in diverse tissues and loss of tissue homeostasis. Effective stress response cascades, conserved from invertebrates to mammals, ensure reestablishment of homeostasis and tissue repair. Hemocytes, the Drosophila blood-like cells, rapidly respond to oxidative stress by immune activation. However, the precise signals how they sense oxidative stress and integrate these signals to modulate and balance the response to oxidative stress in the adult fly are ill-defined. Furthermore, hemocyte diversification was not explored yet on oxidative stress. Here, we employed high-throughput single nuclei RNA-sequencing to explore hemocytes and other cell types, such as fat body, during oxidative stress in the adult fly. We identified distinct cellular responder states in plasmatocytes, the Drosophila macrophages, associated with immune response and metabolic activation upon oxidative stress. We further define oxidative stress-induced DNA damage signaling as a key sensor and a rate-limiting step in immune-activated plasmatocytes controlling JNK-mediated release of the pro-inflammatory cytokine unpaired-3. We subsequently tested the role of this specific immune activated cell stage during oxidative stress and found that inhibition of DNA damage signaling in plasmatocytes, as well as JNK or upd3 overactivation, result in a higher susceptibility to oxidative stress. Our findings uncover that a balanced composition and response of hemocyte subclusters is essential for the survival of adult Drosophila on oxidative stress by regulating systemic cytokine levels and cross-talk to other organs, such as the fat body, to control energy mobilization.


Assuntos
Artrópodes , Drosophila , Animais , Estresse Oxidativo , Macrófagos , Citocinas , Dano ao DNA , Mamíferos
12.
Curr Biol ; 34(7): 1426-1437.e6, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38484734

RESUMO

7An efficient immune system must provide protection against a broad range of pathogens without causing excessive collateral tissue damage. While immune effectors have been well characterized, we know less about the resilience mechanisms protecting the host from its own immune response. Antimicrobial peptides (AMPs) are small, cationic peptides that contribute to innate defenses by targeting negatively charged membranes of microbes. While protective against pathogens, AMPs can be cytotoxic to host cells. Here, we reveal that a family of stress-induced proteins, the Turandots, protect the Drosophila respiratory system from AMPs, increasing resilience to stress. Flies lacking Turandot genes are susceptible to environmental stresses due to AMP-induced tracheal apoptosis. Turandot proteins bind to host cell membranes and mask negatively charged phospholipids, protecting them from cationic pore-forming AMPs. Collectively, these data demonstrate that Turandot stress proteins mitigate AMP cytotoxicity to host tissues and therefore improve their efficacy.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Imunidade Inata/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
13.
Nat Genet ; 34(3): 303-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12808456

RESUMO

During limb outgrowth, signaling by bone morphogenetic proteins (BMPs) must be moderated to maintain the signaling loop between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Gremlin, an extracellular Bmp antagonist, has been proposed to fulfill this function and therefore be important in limb patterning. We tested this model directly by mutating the mouse gene encoding gremlin (Cktsf1b1, herein called gremlin). In the mutant limb, the feedback loop between the ZPA and the AER is interrupted, resulting in abnormal skeletal pattern. We also show that the gremlin mutation is allelic to the limb deformity mutation (ld). Although Bmps and their antagonists have multiple roles in limb development, these experiments show that gremlin is the principal BMP antagonist required for early limb outgrowth and patterning.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/metabolismo , Membro Anterior/embriologia , Membro Posterior/embriologia , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Osso e Ossos/metabolismo , Citocinas , Indução Embrionária , Feminino , Proteínas Fetais/metabolismo , Fator 4 de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/genética , Forminas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Perda de Heterozigosidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Mutação , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais
14.
Adv Healthc Mater ; 11(14): e2200036, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481905

RESUMO

Antibiotic resistance is a severe global health threat and hence demands rapid action to develop novel therapies, including microscale drug delivery systems. Herein, a hierarchical microparticle system is developed to achieve bacteria-activated single- and dual-antibiotic drug delivery for preventing methicillin-resistant Staphylococcus aureus (MRSA) bacterial infections. The designed system is based on a capsosome structure, which consists of a mesoporous silica microparticle coated in alternating layers of oppositely charged polymers and antibiotic-loaded liposomes. The capsosomes are engineered and shown to release their drug payloads in the presence of MRSA toxins controlled by the Agr quorum sensing system. MRSA-activated single drug delivery of vancomycin and synergistic dual delivery of vancomycin together with an antibacterial peptide successfully kills MRSA in vitro. The capability of capsosomes to selectively deliver their cargo in the presence of bacteria, producing a bactericidal effect to protect the host organism, is confirmed in vivo using a Drosophila melanogaster MRSA infection model. Thus, the capsosomes serve as a versatile multidrug, subcompartmentalized microparticle system for preventing antibiotic-resistant bacterial infections, with potential applications to protect wounds or medical device implants from infections.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/química , Toxinas Bacterianas/farmacologia , Drosophila melanogaster , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Vancomicina/química , Vancomicina/farmacologia
15.
Nat Microbiol ; 7(9): 1431-1441, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008617

RESUMO

The medical and scientific response to emerging and established pathogens is often severely hampered by ignorance of the genetic determinants of virulence, drug resistance and clinical outcomes that could be used to identify therapeutic drug targets and forecast patient trajectories. Taking the newly emergent multidrug-resistant bacteria Mycobacterium abscessus as an example, we show that combining high-dimensional phenotyping with whole-genome sequencing in a phenogenomic analysis can rapidly reveal actionable systems-level insights into bacterial pathobiology. Through phenotyping of 331 clinical isolates, we discovered three distinct clusters of isolates, each with different virulence traits and associated with a different clinical outcome. We combined genome-wide association studies with proteome-wide computational structural modelling to define likely causal variants, and employed direct coupling analysis to identify co-evolving, and therefore potentially epistatic, gene networks. We then used in vivo CRISPR-based silencing to validate our findings and discover clinically relevant M. abscessus virulence factors including a secretion system, thus illustrating how phenogenomics can reveal critical pathways within emerging pathogenic bacteria.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Humanos , Fatores de Virulência
16.
Nature ; 437(7059): 746-9, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16107793

RESUMO

Regulating the nuclear factor-kappaB (NF-kappaB) family of transcription factors is of critical importance to animals, with consequences of misregulation that include cancer, chronic inflammatory diseases and developmental defects. Studies in Drosophila melanogaster have proved fruitful in determining the signals used to control NF-kappaB proteins, beginning with the discovery that the Toll/NF-kappaB pathway, in addition to patterning the dorsal-ventral axis of the fly embryo, defines a major component of the innate immune response in both Drosophila and mammals. Here, we characterize the Drosophila wntD (Wnt inhibitor of Dorsal) gene. We show that WntD acts as a feedback inhibitor of the NF-kappaB homologue Dorsal during both embryonic patterning and the innate immune response to infection. wntD expression is under the control of Toll/Dorsal signalling, and increased levels of WntD block Dorsal nuclear accumulation, even in the absence of the IkappaB homologue Cactus. The WntD signal is independent of the common Wnt signalling component Armadillo (beta-catenin). By engineering a gene knockout, we show that wntD loss-of-function mutants have immune defects and exhibit increased levels of Toll/Dorsal signalling. Furthermore, the wntD mutant phenotype is suppressed by loss of zygotic dorsal. These results describe the first secreted feedback antagonist of Toll signalling, and demonstrate a novel Wnt activity in the fly.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/imunologia , Retroalimentação Fisiológica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Fosfoproteínas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Padronização Corporal , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Micrococcus luteus/fisiologia , Mutação/genética , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transporte Proteico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sepse/genética , Sepse/metabolismo , Sepse/microbiologia , Transdução de Sinais , Receptores Toll-Like , Fatores de Transcrição/metabolismo
17.
Front Immunol ; 11: 1419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733472

RESUMO

The origins and causes of infection pathologies are often not understood. Despite this, the study of infection and immunity relies heavily on the ability to discern between potential sources of pathology. Work in the fruit fly has supported the assumption that mortality resulting from bacterial invasion is largely due to direct host-pathogen interactions, as lower pathogen loads are often associated with reduced pathology, and bacterial load upon death is predictable. However, the mechanisms through which these interactions bring about host death are complex. Here we show that infection with the bacterium Francisella novicida leads to metabolic dysregulation and, using treatment with a bacteriostatic antibiotic, we show that this pathology is the result of direct interaction between host and pathogen. We show that mutants of the immune deficiency immune pathway fail to exhibit similar metabolic dysregulation, supporting the idea that the reallocation of resources for immune-related activities contributes to metabolic dysregulation. Targeted investigation into the cross-talk between immune and metabolic pathways has the potential to illuminate some of this interaction.


Assuntos
Carga Bacteriana/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Animais , Antibacterianos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Drosophila melanogaster , Francisella , Infecções por Bactérias Gram-Negativas/microbiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Tetraciclina/farmacologia
18.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31944178

RESUMO

Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signalling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signalling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signalling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.


Assuntos
Citocinas/metabolismo , Proteínas de Drosophila , Músculos/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores de Interleucina , Transdução de Sinais/genética , Animais , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostase , Janus Quinases/genética , Janus Quinases/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo
19.
Curr Biol ; 16(20): 1977-85, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17055976

RESUMO

BACKGROUND: Studies in Drosophila have taught us a great deal about how animals regulate the immediate innate immune response, but we still know little about how infections cause pathology. Here, we examine the pathogenesis associated with Mycobacterium marinum infection in the fly. M. marinum is closely related to M. tuberculosis, which causes tuberculosis in people. RESULTS: A microarray analysis showed that metabolism is profoundly affected in M. marinum-infected flies. A genetic screen identified foxo mutants as slower-dying after infection than wild-type flies. FOXO activity is inhibited by the insulin effector kinase Akt; we show that Akt activation is systemically reduced as a result of M. marinum infection. Finally, we show that flies infected with Mycobacterium marinum undergo a process like wasting: They progressively lose metabolic stores, in the form of fat and glycogen. They also become hyperglycemic. In contrast, foxo mutants exhibit less wasting. CONCLUSIONS: In people, many infections--including tuberculosis--can cause wasting, much as we see in Drosophila. Our study is the first examination of the metabolic consequences of infection in a genetically tractable invertebrate and gives insight into the metabolic consequences of mycobacterial infection, implicating impaired insulin signaling as a key mediator of these events. These results suggest that the fly can be used to study more than the immediate innate immune response to infection; it can also be used to understand the physiological consequences of infection and the immune response.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Metabolismo Energético/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/fisiologia , Mycobacterium marinum , Proteínas Proto-Oncogênicas c-akt/metabolismo , Redução de Peso/fisiologia , Animais , Western Blotting , Primers do DNA , Drosophila melanogaster/imunologia , Insulina/metabolismo , Longevidade , Análise em Microsséries , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
PLoS Pathog ; 3(3): e26, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17352533

RESUMO

Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.


Assuntos
Drosophila melanogaster/imunologia , Imunidade Inata , Fagócitos/fisiologia , Receptores Toll-Like/fisiologia , Animais , Células Cultivadas , Proteínas de Drosophila , Drosophila melanogaster/microbiologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus pneumoniae/patogenicidade , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA