Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 209(1): 107406, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747559

RESUMO

The essential SAS2-related acetyltransferase 1 (Esa1), as a acetyltransferase of MYST family, is indispensable for the cell cycle and transcriptional regulation. The Tudor domain consists of 60 amino acids and belongs to the Royal family, which serves as a module interacting with methylated histone and/or DNA. Although Tudor domain has been widely studied in higher eukaryotes, its structure and function remain unclear in Trypanosoma brucei (T. brucei), a protozoan unicellular parasite causing sleeping sickness in human and nagana in cattle in sub-Saharan Africa. Here, we determined a high-resolution structure of TbEsa1 presumed Tudor domain from T. brucei by X-ray crystallography. TbEsa1 Tudor domain adopts a conserved Tudor-like fold, which is comprised of a five-stranded ß-barrel surrounded by two short α-helices. Furthermore, we revealed a non-specific DNA binding pattern of TbEsa1 Tudor domain. However, TbEsa1 Tudor domain showed no methyl-histone binding ability, due to the absence of key aromatic residues forming a conserved aromatic cage.


Assuntos
Histona Acetiltransferases/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/microbiologia , Domínio Tudor/genética , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Bovinos , Cristalografia por Raios X , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Modelos Moleculares , Ligação Proteica/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/enzimologia , Tripanossomíase Africana/genética
2.
J Struct Biol ; 212(1): 107580, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693018

RESUMO

Ubiquitin-like proteins are conserved in eukaryotes and involved in numerous cellular processes. Ufm1 is proved to play important roles in endoplasmic reticulum homeostasis, vesicle transportation and embryonic development. Enzyme cascade of Ufm1 is similar to that of ubiquitin. Mature Ufm1 is activated and conjugated to substrates by assistance of Ufm1 activating enzyme Uba5 (E1), Ufm1 conjugating enzyme Ufc1 (E2), and Ufm1 ligating enzyme Ufl1 (E3). Here, we determined the solution structure of TbUfm1 from Trypanosoma brucei (T. brucei) by NMR spectroscopy and explored the interactions between TbUfm1 and TbUba5/TbUfc1/TbUfl1. TbUfm1 adopts a typical ß-grasp fold, which partially wraps a central α-helix and the other two helixes. NMR chemical shift perturbation indicated that TbUfm1 interacts with TbUba5 via a hydrophobic pocket formed by α1α2ß1ß2. Although the structure and Uba5-interaction mode of TbUfm1 are conserved in Ufm1 proteins, there are also some differences, which might reflect the potential diversity of Ufm1 in evolution and biological functions.


Assuntos
Proteínas/metabolismo , Trypanosoma brucei brucei/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína
3.
Int J Biol Macromol ; 253(Pt 2): 126764, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696373

RESUMO

The elongation factor TFIIS interacts with Paf1C complex to facilitate processive transcription by Pol II. We here determined the crystal structure of the trypanosoma TFIIS LW domain in a complex with the LFG motif of Leo1, as well as the structures of apo-form TFIIS LW domains from trypanosoma, yeast and human. We revealed that all three TFIIS LW domains possess a conserved hydrophobic core that mediates their interactions with Leo1. Intriguingly, the structural study revealed that trypanosoma Leo1 binding induces the TFIIS LW domain to undergo a conformational change reflected in the length and orientation of α6 helix that is absent in the yeast and human counterparts. These differences explain the higher binding affinity of the TFIIS LW domain interacting with Leo1 in trypanosoma than in yeast and human, and indicate species-specific variations in the interactions. Importantly, the interactions between the TFIIS LW domain and an LFG motif of Leo1 were found to be critical for TFIIS to anchor the entire Paf1C complex. Thus, in addition to revealing a detailed structural basis for the TFIIS-Paf1C interaction, our studies also shed light on the origin and evolution of the roles of TFIIS and Paf1C complex in regulation of transcription elongation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/química , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
FEBS Open Bio ; 9(8): 1421-1431, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31161731

RESUMO

Centrin is an evolutionarily conserved EF-hand-containing protein, which is present in eukaryotic organisms as diverse as algae, yeast, and humans. Centrins are associated with the microtubule-organizing center and with centrosome-related structures, such as basal bodies in flagellar and ciliated cells, and the spindle pole body in yeast. Five centrin genes have been identified in Trypanosoma brucei (T. brucei), a protozoan parasite that causes sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. In the present study, we identified that centrin5 of T. brucei (TbCentrin5) is localized throughout the cytosol and nucleus and enriched in the flagellum. We further identified that TbCentrin5 binds Ca2+ ions with a high affinity and constructed a model of TbCentrin5 bound by Ca2+ ions. Meanwhile, we observed that TbCentrin5 interacts with TbCentrin1, TbCentrin3, and TbCentrin4 and that the interactions are Ca2+ -dependent, suggesting that TbCentrin5 is able to form different complexes with other TbCentrins to participate in relevant cellular processes. Our study provides a foundation for better understanding of the biological roles of TbCentrin5.


Assuntos
Proteínas Contráteis/metabolismo , Proteínas Contráteis/ultraestrutura , Combinação Trimetoprima e Sulfametoxazol/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Bovinos , Citosol/metabolismo , Motivos EF Hand , Flagelos/metabolismo , Flagelos/fisiologia , Humanos , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Trypanosoma brucei brucei/metabolismo
5.
Protein Pept Lett ; 26(11): 860-868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31621553

RESUMO

BACKGROUND: Kinetochores are the macromolecular protein complex that drives chromosome segregation by interacting with centromeric DNA and spindle microtubules in eukaryotes. Kinetochores in well studied eukaryotes bind DNA through widely conserved components like Centromere Protein (CENP)-A and bind microtubules through the Ndc80 complex. However, unconventional type of kinetochore proteins (KKT1-20) were identified in evolutionarily divergent kinetoplastid species such as Trypanosoma brucei (T. brucei), indicating that chromosome segregation is driven by a distinct set of proteins. KKT proteins are comprised of sequential α-helixes that tend to form coiled-coil structures, which will further lead to polymerization and misfolding of proteins, resulting in the formation of inclusion bodies. RESULTS AND CONCLUSION: We expressed and purified the stable KKT proteins with Maltose Binding Protein (MBP) fusion tag in E. coli or Protein A tag in Human Embryonic Kidney (HEK) 293T cells. Furthermore, we identified interactions among KKT proteins using yeast two-hybrid system. The study provides an important basis for further better understanding of the structure and function of KKT proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA