RESUMO
In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the ß Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
RESUMO
Future extremely large telescopes will adopt segmented primary mirrors with several hundreds of segments. Cophasing of the segments together is essential to reach high wavefront quality. The phasing sensor must be able to maintain very high phasing accuracy during the observations, while being able to phase segments dephased by several micrometers. The Zernike phase contrast sensor has been demonstrated on-sky at the Very Large Telescope. We present the multiwavelength scheme that has been implemented to extend the capture range from ±λ/2 on the wavefront to many micrometers, demonstrating that it is successful at phasing mirrors with piston errors up to ±4.0 µm on the wavefront. We discuss the results at different levels and conclude with a phasing strategy for a future extremely large telescope.
RESUMO
The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.
RESUMO
A study is presented of a Mach-Zehnder interferometer for the measurement of phasing errors of the type found in segmented telescopes. We show that with a pinhole much larger than the Airy disk and an optical path difference between the arms equal to a quarter of the wavelength, the interferometric signal is related to the second derivative of the wave front. In this condition the signal is produced mostly by the segmentation errors and is marginally sensitive to other aberrations including atmospheric turbulence. The signal has distinguishable symmetric and antisymmetric properties that are related to segment aberrations. We suggest using the antisymmetric component of the signal to retrieve piston, tip, and tilt. The symmetric component of the signal serves as an estimate of the measurement error. In this way we proceed with a study of the errors associated with the misalignment of the interferometer, the segment edge imperfections, and the nonaveraged atmospheric perturbations. The entire study is performed on a theoretical basis, and numerical simulations are used to cross check the analytical results.
RESUMO
Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey-and which requires the polishing of six optical surfaces-the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5-2 degrees field of view. Double-pass optical tests show diffraction-limited images.
RESUMO
We present an analysis of point-spread functions for segmented mirrors affected by random tip-tilt errors on each segment. In addition to Strehl ratio evaluation, this analysis considers key characteristics such as the intensity and the location of speckles and secondary peaks and the relative energy distribution between these features. We develop a method to describe the shape of a nonaveraged point-spread function and deduce the final expressions for ensemble-averaged characteristics. Based on Keck-type hexagonal segmentation geometry, our study is extended to an arbitrary number of segments, and we describe qualitatively the transition from the case of a mirror with few segments to that of a mirror with several hundred segments--prototype of the next generation of Extremely Large Telescopes.
RESUMO
We present an analysis of the diffraction effects from a segmented aperture with a very large number of segments-prototype of the next generation of extremely large telescopes. This analysis is based on the point-spread-function analytical calculation for Keck-type hexagonal segmentation geometry. We concentrate on the effects that lead to the appearance of speckles and/or a regular pattern of diffraction peaks. These effects are related to random piston and tip-tilt errors on each segment, gaps between segments, and segment edge distortion. We deliver formulas and the typical numerical values for the Strehl ratio, the relative intensity of higher-order diffraction peaks, and the averaged intensity of speckles associated with each particular case of segmentation error.
RESUMO
An interferential position sensor for operation in space at a deep cryogenic temperature (4 K) is derived from a commercial sensor. The application is for the Spectral and Photometric Imaging Receiver submillimetric imaging Fourier-transform spectrometer on the Herschel space telescope. This sensor is used to control the displacement of the interferometer's moving mirrors and to sample the interferograms. This development addresses the following points: minimization of the effects of cooling critical optical parts, introduction of a fully redundant focal plane, selection of optoelectronic components efficient at 4 K, and design of a cryogenic preamplifier.