Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(28): 19469-19496, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979564

RESUMO

A trajectory surface hopping approach, which uses machine learning to speed up the most time-consuming steps, has been adopted to investigate the exciton transfer in light-harvesting systems. The present neural networks achieve high accuracy in predicting both Coulomb couplings and excitation energies. The latter are predicted taking into account the environment of the pigments. Direct simulation of exciton dynamics through light-harvesting complexes on significant time scales is usually challenging due to the coupled motion of nuclear and electronic degrees of freedom in these rather large systems containing several relatively large pigments. In the present approach, however, we are able to evaluate a statistically significant number of non-adiabatic molecular dynamics trajectories with respect to exciton delocalization and exciton paths. The formalism is applied to the Fenna-Matthews-Olson complex of green sulfur bacteria, which transfers energy from the light-harvesting chlorosome to the reaction center with astonishing efficiency. The system has been studied experimentally and theoretically for decades. In total, we were able to simulate non-adiabatically more than 30 ns, sampling also the relevant space of parameters within their uncertainty. Our simulations show that the driving force supplied by the energy landscape resulting from electrostatic tuning is sufficient to funnel the energy towards site 3, from where it can be transferred to the reaction center. However, the high efficiency of transfer within a picosecond timescale can be attributed to the rather unusual properties of the BChl a molecules, resulting in very low inner and outer-sphere reorganization energies, not matched by any other organic molecule, e.g., used in organic electronics. A comparison with electron and exciton transfer in organic materials is particularly illuminating, suggesting a mechanism to explain the comparably high transfer efficiency.

2.
Phys Chem Chem Phys ; 25(33): 22535-22537, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37278527

RESUMO

Correction for 'Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes' by Beatrix M. Bold et al., Phys. Chem. Chem. Phys., 2020, 22, 10500-10518, https://doi.org/10.1039/C9CP05753F.

3.
J Comput Chem ; 42(20): 1402-1418, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33993548

RESUMO

Excitonic coupling plays a key role for the understanding of excitonic energy transport (EET) in, for example, organic photovoltaics. However, the calculation of realistic systems is often beyond the applicability range of accurate wavefunction methods so that lower-scaling semi-empirical methods are used to model EET events. In the present work, the distance and angle dependence of excitonic couplings of dimers of selected organic molecules are evaluated for the semi-empirical long-range corrected density functional based tight binding (LC-DFTB) method and spin opposite scaled second order approximate coupled cluster singles and doubles (SOS-CC2). While semi-empirically scaled methods can lead to slightly increased deviations for excitation energies, the excitonic couplings and their dependence on the dimer geometry are reproduced. LC-DFTB yields a similar accuracy range as density-functional theory (DFT) employing the ωB97X functional while the computation time is reduced by several orders of magnitude. The dependence of the exchange contributions to the excitonic couplings on the dimer geometry is analyzed assessing the calculation of Coulombic excitonic couplings from monomer local excited states only, which reduces the computational effort significantly. The present work is a necessary first step toward the simulation of excitonic energy transport using semi-empirical methods.

4.
Phys Chem Chem Phys ; 22(19): 10500-10518, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31950960

RESUMO

The chromophores of rhodopsins (Rh) and light-harvesting (LH) complexes still represent a major challenge for a quantum chemical description due to their size and complex electronic structure. Since gradient corrected and hybrid density functional approaches have been shown to fail for these systems, only range-separated functionals seem to be a promising alternative to the more time consuming post-Hartree-Fock approaches. For extended sampling of optical properties, however, even more approximate approaches are required. Recently, a long-range corrected (LC) functional has been implemented into the efficient density functional tight binding (DFTB) method, allowing to sample the excited states properties of chromophores embedded into proteins using quantum mechanical/molecular mechanical (QM/MM) with the time-dependent (TD) DFTB approach. In the present study, we assess the accuracy of LC-TD-DFT and LC-TD-DFTB for rhodopsins (bacteriorhodopsin (bR) and pharaonis phoborhodopsin (ppR)) and LH complexes (light-harvesting complex II (LH2) and Fenna-Matthews-Olson (FMO) complex). This benchmark study shows the improved description of the color tuning parameters compared to standard DFT functionals. In general, LC-TD-DFTB can exhibit a similar performance as the corresponding LC functionals, allowing a reliable description of excited states properties at significantly reduced cost. The two chromophores investigated here pose complementary challenges: while huge sensitivity to external field perturbation (color tuning) and charge transfer excitations are characteristic for the retinal chromophore, the multi-chromophoric character of the LH complexes emphasizes a correct description of inter-chromophore couplings, giving less importance to color tuning. None of the investigated functionals masters both systems simultaneously with satisfactory accuracy. LC-TD-DFTB, at the current stage, although showing a systematic improvement compared to TD-DFTB cannot be recommended for studying color tuning in retinal proteins, similar to some of the LC-DFT functionals, because the response to external fields is still too weak. For sampling of LH-spectra, however, LC-TD-DFTB is a viable tool, allowing to efficiently sample absorption energies, as shown for three different LH complexes. As the calculations indicate, geometry optimization may overestimate the importance of local minima, which may be averaged over when using trajectories. Fast quantum chemical approaches therefore may allow for a direct sampling of spectra in the near future.


Assuntos
Bacteriorodopsinas/química , Complexos de Proteínas Captadores de Luz/química , Bacterioclorofila A/química , Beijerinckiaceae/química , Chlorobi/química , Teoria da Densidade Funcional , Modelos Químicos , Retinaldeído/química , Rhodospirillaceae/química
5.
J Chem Theory Comput ; 20(14): 6160-6174, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976696

RESUMO

In this study, we present a multiscale method to simulate the propagation of Frenkel singlet excitons in organic semiconductors (OSCs). The approach uses neural network models to train a Frenkel-type Hamiltonian and its gradient, obtained by the long-range correction version of density functional tight-binding with self-consistent charges. Our models accurately predict site energies, excitonic couplings, and corresponding gradients, essential for the nonadiabatic molecular dynamics simulations. Combined with the fewest switches surface hopping algorithm, the method was applied to four representative OSCs: anthracene, pentacene, perylenediimide, and diindenoperylene. The simulated exciton diffusion constants align well with experimental and reported theoretical values and offer valuable insights into exciton dynamics in OSCs.

6.
J Chem Theory Comput ; 19(13): 3825-3838, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37341096

RESUMO

The fewest switches surface hopping method has been widely used for the simulation of charge transport in organic semiconductors. In the present study, we perform nonadiabatic molecular dynamics (NAMD) simulations of hole transport in anthracene and pentacene. The simulations employ neural network (NN) based Hamiltonians in two different nuclear relaxation schemes, which utilize either a precalculated reorganization energy or site energy gradients additionally obtained from NN models. The performance of the NN models is evaluated in reproducing hole mobilities and inverse participation ratios in terms of both quality and computational cost. The results show that charge mobilities and inverse participation ratios obtained by models, which were trained on DFTB or DFT training data, are in very good agreement with the respective QM reference method for implicit relaxation and, where available, also for explicit relaxation. Reasonable agreement with experimental hole mobilities is achieved. Utilizing our models in NAMD simulations of charge transfer amounts to a reduction of the computational cost in a range of 1 to 7 orders of magnitude compared to DFTB and DFT. This proves neural networks as promising tools for the improvement of accuracy and efficiency of charge and potentially also exciton transport simulations in complex and large molecular systems.

7.
J Chem Theory Comput ; 16(7): 4061-4070, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32491856

RESUMO

Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA