Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Alcohol Clin Exp Res ; 44(4): 777-789, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056245

RESUMO

Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.


Assuntos
Pancreatite Alcoólica/epidemiologia , Acetaldeído/metabolismo , Autofagia , Cálcio/metabolismo , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático , Etanol/metabolismo , Exocitose , Predisposição Genética para Doença , Humanos , Hiperlipidemias/epidemiologia , Infecções/epidemiologia , NAD/metabolismo , Obesidade/epidemiologia , Pancreatite Alcoólica/metabolismo , Fatores de Proteção , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Proteínas SNARE/metabolismo , Índice de Gravidade de Doença , Fumar/epidemiologia
2.
J Biol Chem ; 293(7): 2510-2522, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284677

RESUMO

Epithelial pancreatic acinar cells perform crucial functions in food digestion, and acinar cell homeostasis required for secretion of digestive enzymes relies on SNARE-mediated exocytosis. The ubiquitously expressed Sec1/Munc18 protein mammalian uncoordinated-18c (Munc18c) regulates membrane fusion by activating syntaxin-4 (STX-4) to bind cognate SNARE proteins to form a SNARE complex that mediates exocytosis in many cell types. However, in the acinar cell, Munc18c's functions in exocytosis and homeostasis remain inconclusive. Here, we found that pancreatic acini from Munc18c-depleted mice (Munc18c+/-) and human pancreas (lenti-Munc18c-shRNA-treated) exhibit normal apical exocytosis of zymogen granules (ZGs) in response to physiologic stimulation with the intestinal hormone cholecystokinin (CCK-8). However, when stimulated with supraphysiologic CCK-8 levels to mimic pancreatitis, Munc18c-depleted (Munc18c+/-) mouse acini exhibited a reduction in pathological basolateral exocytosis of ZGs resulting from a decrease in fusogenic STX-4 SNARE complexes. This reduced basolateral exocytosis in part explained the less severe pancreatitis observed in Munc18c+/- mice after hyperstimulation with the CCK-8 analog caerulein. Likely as a result of this secretory blockade, Munc18c-depleted acini unexpectedly activated a component of the endoplasmic reticulum (ER) stress response that contributed to autophagy induction, resulting in downstream accumulation of autophagic vacuoles and autolysosomes. We conclude that Munc18c's role in mediating ectopic basolateral membrane fusion of ZGs contributes to the initiation of CCK-induced pancreatic injury, and that blockade of this secretory process could increase autophagy induction.


Assuntos
Ceruletídeo/efeitos adversos , Proteínas Munc18/metabolismo , Pancreatite/metabolismo , Idoso , Animais , Ceruletídeo/metabolismo , Colecistocinina/efeitos adversos , Colecistocinina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Exocitose , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Munc18/genética , Pâncreas/metabolismo , Pancreatite/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
3.
J Biol Chem ; 293(18): 6893-6904, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29549124

RESUMO

The voltage-dependent K+ (Kv) channel Kv2.1 is a major delayed rectifier in many secretory cells, including pancreatic ß cells. In addition, Kv2.1 has a direct role in exocytosis at an undefined step, involving SNARE proteins, that is independent of its ion-conducting pore function. Here, we elucidated the precise step in exocytosis. We previously reported that syntaxin-3 (Syn-3) is the key syntaxin that mediates exocytosis of newcomer secretory granules that spend minimal residence time on the plasma membrane before fusion. Using high-resolution total internal reflection fluorescence microscopy, we now show that Kv2.1 forms reservoir clusters on the ß-cell plasma membrane and binds Syn-3 via its C-terminal C1b domain, which recruits newcomer insulin secretory granules into this large reservoir. Upon glucose stimulation, secretory granules were released from this reservoir to replenish the pool of newcomer secretory granules for subsequent fusion, occurring just adjacent to the plasma membrane Kv2.1 clusters. C1b deletion blocked the aforementioned Kv2.1-Syn-3-mediated events and reduced fusion of newcomer secretory granules. These insights have therapeutic implications, as Kv2.1 overexpression in type-2 diabetes rat islets restored biphasic insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Membrana Celular/metabolismo , Exocitose/fisiologia , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Microscopia de Fluorescência , Ligação Proteica , Domínios Proteicos , Proteínas Qa-SNARE/química , Ratos , Ratos Wistar , Proteínas SNARE/metabolismo , Canais de Potássio Shab/fisiologia
4.
Gastroenterology ; 154(6): 1805-1821.e5, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29360461

RESUMO

BACKGROUND & AIMS: Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. METHODS: We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-µm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2+/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. RESULTS: Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. CONCLUSIONS: In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen.


Assuntos
Autofagia/genética , Exocitose/genética , Pâncreas/citologia , Pancreatite/genética , Sintaxina 1/metabolismo , Células Acinares/metabolismo , Animais , Membrana Celular/metabolismo , Ceruletídeo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Pancreatite/induzido quimicamente , Vesículas Secretórias/fisiologia , Tripsinogênio/metabolismo
5.
J Biol Chem ; 292(14): 5957-5969, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28242761

RESUMO

A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathologic responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis.


Assuntos
Exocitose , Técnicas de Preparação Histocitológica/métodos , Modelos Biológicos , Pâncreas Exócrino/metabolismo , Pancreatite/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pâncreas Exócrino/patologia , Pancreatite/patologia
6.
J Biol Chem ; 292(6): 2203-2216, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28031464

RESUMO

In type-2 diabetes (T2D), severely reduced islet syntaxin-1A (Syn-1A) levels contribute to insulin secretory deficiency. We generated ß-cell-specific Syn-1A-KO (Syn-1A-ßKO) mice to mimic ß-cell Syn-1A deficiency in T2D. Glucose tolerance tests showed that Syn-1A-ßKO mice exhibited blood glucose elevation corresponding to reduced blood insulin levels. Perifusion of Syn-1A-ßKO islets showed impaired first- and second-phase glucose-stimulated insulin secretion (GSIS) resulting from reduction in readily releasable pool and granule pool refilling. To unequivocally determine the ß-cell exocytotic defects caused by Syn-1A deletion, EM and total internal reflection fluorescence microscopy showed that Syn-1A-KO ß-cells had a severe reduction in the number of secretory granules (SGs) docked onto the plasma membrane (PM) at rest and reduced SG recruitment to the PM after glucose stimulation, the latter indicating defects in replenishment of releasable pools required to sustain second-phase GSIS. Whereas reduced predocked SG fusion accounted for reduced first-phase GSIS, selective reduction of exocytosis of short-dock (but not no-dock) newcomer SGs accounted for the reduced second-phase GSIS. These Syn-1A actions on newcomer SGs were partly mediated by Syn-1A interactions with newcomer SG VAMP8.


Assuntos
Exocitose , Insulina/metabolismo , Vesículas Secretórias/metabolismo , Sintaxina 1/fisiologia , Animais , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Sintaxina 1/genética
7.
Traffic ; 14(4): 428-39, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23346930

RESUMO

RalA GTPase has been implicated in the regulated delivery of exocytotic vesicles to the plasma membrane (PM) in mammalian cells. We had reported that RalA regulates biphasic insulin secretion, which we have now determined to be contributed by RalA direct interaction with voltage-gated calcium (Cav ) channels. RalA knockdown (KD) in INS-1 cells and primary rat ß-cells resulted in a reduction in Ca(2+) currents arising specifically from L-(Cav 1.2 and Cav 1.3) and R-type (Cav 2.3) Ca(2+) channels. Restoration of RalA expression in RalA KD cells rescued these defects in Ca(2+) currents. RalA co-immunoprecipitated with the Cav α2 δ-1 auxiliary subunit known to bind the three Cav s. Moreover, the functional molecular interactions between Cav α2 δ-1 and RalA on the PM shown by total internal reflection fluorescent microscopy/FRET analysis could be induced by glucose stimulation. KD of RalA inhibited trafficking of α2 δ-1 to insulin granules without affecting the localization of the other Cav subunits. Furthermore, we confirmed that RalA and α2 δ-1 functionally interact since RalA KD-induced inhibition of Cav currents could not be recovered by RalA when α2 δ-1 was simultaneously knocked down. These data provide a mechanism for RalA function in insulin secretion, whereby RalA binds α2 δ-1 on insulin granules to tether these granules to PM Ca(2+) channels. This acts as a chaperoning step prior to and in preparation for sequential assembly of exocyst and excitosome complexes that mediate biphasic insulin secretion.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo R/metabolismo , Insulina/metabolismo , Subunidades Proteicas/metabolismo , Vesículas Secretórias/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo R/genética , Membrana Celular/metabolismo , Exocitose , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Células Secretoras de Insulina/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Transporte Proteico , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
8.
Diabetologia ; 58(6): 1250-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25762204

RESUMO

AIMS/HYPOTHESIS: Of the four exocytotic syntaxins (Syns), much is now known about the role of Syn-1A (pre-docked secretory granules [SGs]) and Syn-3 (newcomer SGs) in insulin exocytosis. Some work was reported on Syn-4's role in biphasic glucose-stimulated insulin secretion (GSIS), but its precise role in insulin SG exocytosis remains unclear. In this paper we examine this role in human beta cells. METHODS: Endogenous function of Syn-4 in human islets was assessed by knocking down its expression with lentiviral single hairpin RNA (lenti-shRNA)-RFP. Biphasic GSIS was determined by islet perifusion assay. Single-cell analysis of exocytosis of red fluorescent protein (RFP)-positive beta cells (exhibiting near-total depletion of Syn-4) was by patch clamp capacitance measurements (Cm) and total internal reflection fluorescence microscopy (TIRFM), the latter to further assess single SG behaviour. Co-immunoprecipitations were conducted on INS-1 cells to assess exocytotic complexes. RESULTS: Syn-4 knockdown (KD) of 77% in human islets caused a concomitant reduction in cognate Munc18c expression (46%) without affecting expression of other exocytotic proteins; this resulted in reduction of GSIS in the first phase (by 42%) and the second phase (by 40%). Cm of RFP-tagged Syn-4-KD beta cells showed severe inhibition in the readily releasable pool (by 71%) and mobilisation from reserve pools (by 63%). TIRFM showed that Syn-4-KD-induced inhibition of first-phase GSIS was attributed to reduction in exocytosis of both pre-docked and newcomer SGs (which undergo minimal residence or docking time at the plasma membrane before fusion). Second-phase inhibition was attributed to reduction in newcomer SGs. Stx-4 co-immunoprecipitated Munc18c, VAMP2 and VAMP8, suggesting that these exocytotic complexes may be involved in exocytosis of pre-docked and newcomer SGs. CONCLUSIONS/INTERPRETATION: Syn-4 is involved in distinct molecular machineries that influence exocytosis of both pre-docked and newcomer SGs in a manner functionally redundant to Syn-1A and Syn-3, respectively; this underlies Syn-4's role in mediating portions of first-phase and second-phase GSIS.


Assuntos
Insulinas Bifásicas/sangue , Exocitose , Células Secretoras de Insulina/citologia , Insulina/metabolismo , Proteínas Qa-SNARE/metabolismo , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Secreção de Insulina , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteínas Munc18/metabolismo , Técnicas de Patch-Clamp , Proteínas R-SNARE/metabolismo , RNA Interferente Pequeno/metabolismo , Análise de Célula Única , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína Vermelha Fluorescente
9.
Gastroenterology ; 143(3): 832-843.e7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710192

RESUMO

BACKGROUND & AIMS: During development of alcoholic pancreatitis, oxidative (acetaldehyde) and nonoxidative metabolites (ethyl palmitate, ethyl oleate), rather than ethanol itself, mediate toxic injury. Exposure of pancreatic acini to ethanol blocks cholecystokinin (CCK)-8-stimulated apical exocytosis and redirects exocytosis to the basolateral plasma membrane, causing interstitial pancreatitis. We examined how each ethanol metabolite contributes to these changes in exocytosis. METHODS: Rat pancreatic acini were incubated with concentrations of ethanol associated with alcoholic pancreatitis (20-50 mmol/L) or ethanol metabolites (1-3 mmol/L) and then stimulated with CCK-8. We performed single zymogen granule (ZG) exocytosis assays, Ca(2+) imaging studies, ultrastructural analyses (with electron microscopy), and confocal microscopy to assess the actin cytoskeleton and track the movement of vesicle-associated membrane protein (VAMP)-8-containing ZGs. Coimmunoprecipitation assays were used to identify complexes that contain the distinct combinations of Munc18 and the soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins, which mediate apical (ZG-apical plasma membrane) and basolateral exocytosis and fusion between ZGs (ZG-ZG). RESULTS: The ethanol metabolites acetaldehyde, ethyl palmitate, and ethyl oleate reduced CCK-8-stimulated apical exocytosis and formation of apical exocytotic complexes (between Munc18b and Syntaxin-2, synaptosomal-associated protein of 23 kilodaltons [SNAP23], and VAMP2) in rat pancreatic acini. Acetaldehyde and ethyl oleate redirected CCK-8-stimulated exocytosis to the basal and lateral plasma membranes and translocation of VAMP8-containing ZGs toward the basolateral plasma membrane. This process was mediated primarily via formation of basolateral exocytotic complexes (between Munc18c and Syntaxin-4, SNAP23, and VAMP8). Exposure of the acini to acetaldehyde and ethyl oleate followed by CCK-8 stimulation mildly perturbed the actin cytoskeleton and Ca(2+) signaling; exposure to ethyl palmitate severely affected Ca(2+) signaling. Acetaldehyde, like ethanol, promoted fusion between ZGs by the formation of ZG-ZG exocytotic complexes (between Munc18b and Syntaxin-3, SNAP23, and VAMP8), whereas ethyl palmitate and ethyl oleate reduced ZG-ZG fusion and formation of these complexes. CONCLUSIONS: The ethanol metabolites acetaldehyde, ethyl palmitate, and ethyl oleate perturb exocytosis processes in cultured rat pancreatic acini (apical blockade, basolateral exocytosis, and fusion between ZGs). Acetaldehyde and, to a lesser degree, ethyl oleate produce many of the same pathologic effects of ethanol on CCK-8-stimulated exocytosis in pancreatic acini.


Assuntos
Amilases/metabolismo , Etanol/toxicidade , Exocitose/efeitos dos fármacos , Pâncreas Exócrino/efeitos dos fármacos , Pancreatite Alcoólica/etiologia , Vesículas Secretórias/efeitos dos fármacos , Acetaldeído/metabolismo , Acetaldeído/toxicidade , Citoesqueleto de Actina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etanol/metabolismo , Imunoprecipitação , Masculino , Fusão de Membrana/efeitos dos fármacos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas Munc18/metabolismo , Ácidos Oleicos/metabolismo , Ácidos Oleicos/toxicidade , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/toxicidade , Pâncreas Exócrino/enzimologia , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/ultraestrutura , Pancreatite Alcoólica/enzimologia , Pancreatite Alcoólica/patologia , Proteínas Qa-SNARE/metabolismo , Ratos , Ratos Sprague-Dawley , Vesículas Secretórias/enzimologia , Vesículas Secretórias/metabolismo , Sincalida/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
J Biol Chem ; 286(15): 13638-46, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21330370

RESUMO

Numerous reports have shown that mitochondrial dysfunctions play a major role in apoptosis of Leishmania parasites, but the endoplasmic reticulum (ER) stress-induced apoptosis in Leishmania remains largely unknown. In this study, we investigate ER stress-induced apoptotic pathways in Leishmania major using tunicamycin as an ER stress inducer. ER stress activates the expression of ER-localized chaperone protein BIP/GRP78 (binding protein/identical to the 78-kDa glucose-regulated protein) with concomitant generation of intracellular reactive oxygen species. Upon exposure to ER stress, the elevation of cytosolic Ca(2+) level is observed due to release of Ca(2+) from internal stores. Increase in cytosolic Ca(2+) causes mitochondrial membrane potential depolarization and ATP loss as ablation of Ca(2+) by blocking voltage-gated cation channels with verapamil preserves mitochondrial membrane potential and cellular ATP content. Furthermore, ER stress-induced reactive oxygen species (ROS)-dependent release of cytochrome c and endonuclease G from mitochondria to cytosol and subsequent translocation of endonuclease G to nucleus are observed. Inhibition of caspase-like proteases with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone or metacaspase inhibitor antipain does not prevent nuclear DNA fragmentation and phosphatidylserine exposure. Conversely, significant protection in tunicamycin-induced DNA degradation and phosphatidylserine exposure was achieved by either pretreatment of antioxidants (N-acetyl-L-cysteine, GSH, and L-cysteine), chemical chaperone (4-phenylbutyric acid), or addition of Ca(2+) chelator (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid-acetoxymethyl ester). Taken together, these data strongly demonstrate that ER stress-induced apoptosis in L. major is dependent on ROS and Ca(2+)-induced mitochondrial toxicity but independent of caspase-like proteases.


Assuntos
Apoptose , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Leishmania major/metabolismo , Resposta a Proteínas não Dobradas , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Antibacterianos/farmacologia , Caspases/genética , Caspases/metabolismo , Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Leishmania major/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Espécies Reativas de Oxigênio/metabolismo , Tunicamicina/farmacologia
11.
J Biol Chem ; 286(34): 29627-34, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21733851

RESUMO

Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.


Assuntos
Endocitose/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Exocitose/fisiologia , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/ultraestrutura , Camundongos , Camundongos Knockout , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , Vesículas Secretórias/genética , Vesículas Secretórias/ultraestrutura , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
12.
Arch Biochem Biophys ; 515(1-2): 21-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21893024

RESUMO

The active site architecture of Leishmania major peroxidase (LmP) is very similar with both cytochrome c peroxidase and ascorbate peroxidase. We utilized point mutagenesis to investigate if the conserved proximal methionine residues (Met248 and Met249) in LmP help in controlling catalysis. Steady-state kinetics of methionine mutants shows that ferrocytochrome c oxidation is <2% of wild type levels without affecting the second order rate constant of first phase of Compound I formation, while the activity toward a small molecule substrate, guaiacol or iodide, increases. Our diode array stopped-flow spectral studies show that the porphyrin π-cation radical of Compound I in mutant LmP is more stable than wild type enzyme. These results suggest that the electronegative sulfur atoms of the proximal pocket are critical factors for controlling the location of a stable Compound I radical in heme peroxidases and are important in the oxidation of ferrocytochrome c.


Assuntos
Leishmania/enzimologia , Metionina/fisiologia , Peroxidases/metabolismo , Animais , Sequência de Bases , Citocromos c/metabolismo , Primers do DNA , Cinética , Mutagênese Sítio-Dirigida , Oxirredução , Peroxidases/química , Espectrofotometria Ultravioleta
13.
Autophagy ; 17(10): 3068-3081, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33213278

RESUMO

Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKß-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKß inhibitors, and confirmed by the inability of IKBKB/IKKß phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKß's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.Abbreviations: AL: autolysosome; AP: acute pancreatitis; AV: autophagic vacuole; CCK: cholecystokinin; IKBKB/IKKß: inhibitor of nuclear factor kappa B kinase subunit beta; SNAP23: synaptosome associated protein 23; SNARE: soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; STX: syntaxin; TAP: trypsinogen activation peptide; VAMP: vesicle associated membrane protein; ZG: zymogen granule.


Assuntos
Pancreatite , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Doença Aguda , Animais , Autofagia , Exocitose , Humanos , Lisossomos , Pâncreas , Pancreatite/genética , Pancreatite/prevenção & controle , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratos , Tripsina/farmacologia , Proteínas de Transporte Vesicular
14.
Arch Biochem Biophys ; 495(2): 129-35, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20060805

RESUMO

Architecture of hemoprotein is solely responsible for different nature of heme coordination. Here we report that substitution of the acidic surface residue Glu226 to Ala in ascorbate peroxidase from Leishmania major alters the 5 coordinate high spin (5cHS) to a 6 coordinate low spin (6cLS) form at pH 7.5. Using UV-visible spectrophotometry, we show that the sixth ligand of heme in Glu226Ala at pH 7.5 is hydroxo. When the pH is decreased to 5.5, a new species of Glu226Ala appeared that had a spectrum characteristic of a 6cHS derivative. Stopped flow spectrophotometric techniques revealed that characteristics of Compound I was not seen in the Glu226Ala in presence of H(2)O(2). Similarly guaiacol, ascorbate and ferrocytochrome c oxidation rate was 10(3) orders less for the Glu226Ala mutants compared to the wild type. These data suggested that surface acidic residue Glu226 might play role in proper maintenance of active site conformation.


Assuntos
Heme/química , Leishmania major/enzimologia , Peroxidases/química , Peroxidases/genética , Sequência de Aminoácidos , Ascorbato Peroxidases , Domínio Catalítico , Dicroísmo Circular , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peroxidases/metabolismo , Alinhamento de Sequência , Espectrofotometria Ultravioleta , Homologia Estrutural de Proteína
15.
Eukaryot Cell ; 8(11): 1721-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749178

RESUMO

Ascorbate peroxidase from Leishmania major (LmAPX) is one of the key enzymes for scavenging of reactive oxygen species generated from the mitochondrial respiratory chain. We have investigated whether mitochondrial LmAPX has any role in oxidative stress-induced apoptosis. The measurement of reduced glutathione (GSH) and protein carbonyl contents in cellular homogenates indicates that overexpression of LmAPX protects Leishmania cells against depletion of GSH and oxidative damage of proteins by H(2)O(2) or camptothecin (CPT) treatment. Confocal microscopy and fluorescence spectroscopy data have revealed that the intracellular elevation of Ca(2+) attained by the LmAPX-overexpressing cells was always below that attained in control cells. Flow cytometry assay data and confocal microscopy observation strongly suggest that LmAPX overexpression protects cells from H(2)O(2)-induced mitochondrial membrane depolarization as well as ATP decrease. Western blot data suggest that overexpression of LmAPX shields against H(2)O(2)- or CPT-induced cytochrome c and endonuclease G release from mitochondria and subsequently their accumulation in the cytoplasm. Caspase activity assay by flow cytometry shows a lower level of caspase-like protease activity in LmAPX-overexpressing cells under apoptotic stimuli. The data on phosphatidylserine exposed on the cell surface and DNA fragmentation results show that overexpression of LmAPX renders the Leishmania cells more resistant to apoptosis provoked by H(2)O(2) or CPT treatment. Taken together, these results indicate that constitutive overexpression of LmAPX in the mitochondria of L. major prevents cells from the deleterious effects of oxidative stress, that is, mitochondrial dysfunction and cellular death.


Assuntos
Apoptose , Expressão Gênica , Leishmania major/enzimologia , Mitocôndrias/enzimologia , Estresse Oxidativo , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Ascorbato Peroxidases , Peróxido de Hidrogênio/metabolismo , Leishmania major/citologia , Leishmania major/genética , Leishmania major/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Peroxidases/genética , Proteínas de Protozoários/genética
16.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051343

RESUMO

SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet ß cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse ß cells in vivo and human ß cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules. Such effects on T2D Goto-Kakizaki rats improved glucose homeostasis that was superior to conventional treatment with sulfonylurea glybenclamide. SNAP23, although fusion competent in slower secretory cells, in the context of ß cells acts as a weak partial fusion agonist or inhibitory SNARE. Here, SNAP23 depletion promotes SNAP25 to bind calcium channels more quickly and longer where granule fusion occurs to increase exocytosis efficiency. ß Cell SNAP23 antagonism is a strategy to treat diabetes.


Assuntos
Canais de Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Insulina/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Glucose/metabolismo , Homeostase , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratos
17.
Biochim Biophys Acta ; 1784(5): 863-71, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18342641

RESUMO

Ascorbate peroxidase from L. Major (LmAPX) is a functional hybrid between cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX). We utilized point mutagenesis to investigate if a conserved proximal tryptophan residue (Trp208) among Class I peroxidase helps in controlling catalysis. The mutant W208F enzyme had no effect on both apparent dissociation constant of the enzyme-cytochrome c complex and K(m) value for cytochrome c indicating that cytochrome c binding affinity to the enzyme did not alter after mutation. Surprisingly, the mutant was 1000 times less active than the wild type in cytochrome c oxidation without affecting the second order rate constant of compound I formation. Our diode array stopped-flow spectral studies showed that the substrate unbound wild type enzyme reacts with H(2)O(2) to form compound I (compound II type spectrum), which was quite different from that of compound I in W208F mutant as well as horseradish peroxidase (HRP). The spectrum of the compound I in wild type LmAPX showed a red shift from 409 nm to 420 nm with equal intensity, which was broadly similar to those of known Trp radical. In case of compound I for W208F mutant, the peak in the Soret region was decreased in heme intensity at 409 nm and was not shifted to 420 nm suggesting this type of spectrum was similar to that of the known porphyrin pi-cation radical. In case of an enzyme-H(2)O(2)-ascorbate system, the kinetic for formation and decay of compound I and II of a mutant enzyme was almost identical to that of a wild type enzyme. Thus, the results of cytochrome c binding, compound I formation rate and activity assay suggested that Trp208 in LmAPX was essential for electron transfer from cytochrome c to heme ferryl but was not indispensable for ascorbate or guaiacol oxidation.


Assuntos
Citocromos c/metabolismo , Leishmania major/enzimologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Animais , Ascorbato Peroxidases , Ácido Ascórbico/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Fenilalanina/genética , Análise Espectral , Relação Estrutura-Atividade , Especificidade por Substrato , Triptofano/genética
18.
Biochim Biophys Acta ; 1770(2): 247-56, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17118560

RESUMO

We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H(2)O(2) with concurrent evolution of O(2). This pseudocatalatic degradation of H(2)O(2) to O(2) is solely dependent on ascorbate and is blocked by a spin trap, alpha-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H(2)O with subsequent regeneration of ascorbate by the reduction of MDA with H(2)O(2) evolving O(2) through the intermediate formation of O(2)(-). Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN(-) in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN(-). Further kinetic studies indicate that SCN(-) itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN(-) blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H(2)O(2) to O(2). Binding studies by optical difference spectroscopy indicate that SCN(-) binds LmAPX (Kd = 100 +/- 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN(-) acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.


Assuntos
Catalase/metabolismo , Leishmania major/enzimologia , Peroxidases/metabolismo , Tiocianatos/farmacologia , Animais , Ascorbato Peroxidases , Ácido Ascórbico/metabolismo , Clonagem Molecular , Guaiacol/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Ligantes , Oxirredução , Oxigênio/análise , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo
19.
Free Radic Biol Med ; 45(11): 1520-9, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18822369

RESUMO

Heme peroxidases are a class of multifunctional redox-active proteins found in all organisms. We recently cloned, expressed, and characterized an ascorbate peroxidase from Leishmania major (LmAPX) that was capable of detoxifying hydrogen peroxide. Localization studies using green fluorescent protein fusions revealed that LmAPX was localized within the mitochondria by its N-terminal signal sequence. Subcellular fractionation analysis of the cell homogenate by the Percoll density-gradient method and subsequent Western blot analysis with anti-LmAPX antibody further confirmed the mitochondrial localization of mature LmAPX. Submitochondrial fractionation analysis showed that the mature enzyme (~3.6 kDa shorter than the theoretical value of the whole gene) was present in the intermembrane space side of the inner membrane. Moreover, expression of the LmAPX gene was increased by treatment with exogenous H(2)O(2), indicating that LmAPX was induced by oxidative stress. To investigate the biological role of LmAPX we generated Leishmania cells overexpressing LmAPX in the mitochondria. Flow-cytometric analysis, thin-layer chromatography, and IC(50) measurements suggested that overexpression of LmAPX caused depletion of the mitochondrial ROS burden and conferred a protection against mitochondrial cardiolipin oxidation and increased tolerance to H(2)O(2). These results suggest that the single-copy LmAPX gene plays a protective role against oxidative damage.


Assuntos
Cardiolipinas/metabolismo , Leishmania major/enzimologia , Mitocôndrias/metabolismo , Peroxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Variância , Animais , Ascorbato Peroxidases , Western Blotting , Cromatografia em Camada Fina , Citometria de Fluxo , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Concentração Inibidora 50 , Leishmania major/citologia , Microscopia Confocal , Mitocôndrias/ultraestrutura , Oxirredução , Estresse Oxidativo/genética , Peroxidases/genética , Partículas Submitocôndricas/metabolismo , Partículas Submitocôndricas/ultraestrutura , Ativação Transcricional , Regulação para Cima
20.
Contraception ; 77(6): 456-62, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18477497

RESUMO

BACKGROUND: This study was conducted for to explore the plausible pathway of Chenopodium album seed extract (CAE)-mediated sperm cell death. STUDY DESIGN: The role of CAE for its spermicidal action was assessed by (a) measuring lipid peroxidation, protein carbonyl content and intracellular glutathione content in CAE exposed sperm cells; (b) assaying antioxidant enzymes like catalase and superoxide dismutase (SOD); (c) analyzing protein expressions by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis; (d) fluorimetric measurement of intracellular H(2)O(2) level and generation of reactive oxygen species (ROS) in CAE-treated sperm cells; and (e) DNA ladder formation study. RESULTS: CAE-induced sperm death is due to (a) lipid peroxidation of the sperm cell membrane, oxidation of some critical cellular proteins and depletion of intracellular reduced gluthathione, indicating production of ROS; (b) activation of Mn-SOD and inactivation of catalase favoring endogenous accumulation of H(2)O(2); (c) generation of O(2)(*-) at an enhanced rate during oxidative stress as evidenced by increased Mn-SOD activity and protein expression; (d) accumulation of ROS in spermatozoa reflected in the fluorimetric experiments; and (e) increased production of O(2)(*-) and H(2)O(2) induced apoptosis-like death in sperm cells as observed by DNA ladder formation. CONCLUSION: The sperm death mediated by CAE is due to oxidative damage of cellular macromolecules by in situ generation of ROS.


Assuntos
Morte Celular , Chenopodium album , Extratos Vegetais/farmacologia , Sementes , Espermicidas/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Animais , Catalase/metabolismo , Fragmentação do DNA , Glutationa/metabolismo , Peroxidação de Lipídeos , Masculino , Peroxidases/metabolismo , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley , Espermatozoides/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA