Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(46): 28495-28505, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36408893

RESUMO

Gas phase homodimers of 3,3,3-trifluoro-1,2-epoxypropane (TFO), a molecule which has shown promise as an effective chiral tag for determining the absolute stereochemistry and the enantiomeric composition of chiral analytes, are explored using a variety of quantum chemistry models and rotational spectroscopy. The potential surface governing the interaction of the two molecules is rapidly explored using the artificial bee colony algorithm for homodimer candidates that are subsequently optimized by quantum chemistry methods. Although all model chemistries employed agree that the lowest energy form of the heterochiral homodimer of TFO (RS or SR) is lower in energy than that of the homochiral dimer (RR or SS), the energy spacings among the lower energy isomers of each and indeed the absolute energy ordering of the isomers of each are very model dependent. The experimental results suggest that the B3LYP-D3BJ/def2-TZVP model chemistry is the most reliable and provides excellent estimates of spectroscopic constants. In accord with theoretical predictions the non-polar lowest energy form of the heterochiral homodimer is not observed, while two isomers of the homochiral dimer are observed and spectroscopically characterized. Observation and assignment of the spectra for all three unique singly-substituted 13C isotopologues, in addition to that of the most abundant isotopologue for the lowest energy isomer of the homochiral homodimer of TFO, provide structural information that compares very favorably with theoretical predictions, most notably that the presence of three fluorine atoms on the trifluoromethyl group removes their direct participation in the intermolecular interactions, which instead comprise two equivalent pairs of CH⋯O hydrogen bonds between the two epoxide rings augmented by favorable dispersion interactions between the rings themselves.

2.
Phys Chem Chem Phys ; 22(37): 21474-21487, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32945819

RESUMO

The tracking of symmetry-breaking events in space is a long-lasting goal of astrochemists, aiming at an understanding of homochiral Earth chemistry. One current effort at this frontier aims at the detection of small chiral molecules in the interstellar medium. For that, high-resolution laboratory spectroscopy data is required, providing blueprints for the search and assignment of these molecules using radioastronomy. Here, we used chirped-pulse Fourier transform microwave and millimeter-wave spectroscopy and frequency modulation absorption spectroscopy to record and assign the rotational spectrum of the chiral aromatic molecule styrene oxide, C6H5C2H3O, a relevant candidate for future radioastronomy searches. Using experimental data from the 2-12, 75-110, 170-220, and 260-330 GHz regions, we performed a global spectral analysis, which was complemented by quantum chemistry calculations. A global fit of the ground state rotational spectrum was obtained, including rotational transitions from all four frequency regions. Primary rotational constants as well as quartic and sextic centrifugal distortion constants were determined. We also investigated vibrationally excited states of styrene oxide, and for the three lowest energy vibrational states, we determined rotational constants including centrifugal distortion corrections up to the sextic order. In addition, spectroscopic parameters for the singly-substituted 13C and 18O isotopologues were retrieved from the spectrum in natural abundance and used to determine the effective ground state structure of styrene oxide in the gas phase. The spectroscopic parameters and line lists of rotational transitions obtained here will assist future astrochemical studies of this class of chiral organic molecules.

3.
Annu Rev Phys Chem ; 69: 499-519, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29490206

RESUMO

Chiroptical spectroscopy techniques for the differentiation of enantiomers in the condensed phase are based on an established paradigm that relies on symmetry breaking using circularly polarized light. We review a novel approach for the study of chiral molecules in the gas phase using broadband rotational spectroscopy, namely microwave three-wave mixing, which is a coherent, nonlinear, and resonant process. This technique can be used to generate a coherent molecular rotational signal that can be detected in a manner similar to that in conventional Fourier transform microwave spectroscopy. The structure (and thermal distribution of conformations), handedness, and enantiomeric excess of gas-phase samples can be determined unambiguously by employing tailored microwave fields. We discuss the theoretical and experimental aspects of the method, the significance of the first demonstrations of the technique for enantiomer differentiation, and the method's rapid advance into a robust choice to study molecular chirality in the gas phase. Very recently, the microwave three-wave mixing approach was extended to enantiomer-selective population transfer, an important step toward spatial enantiomer separation on the fly.

4.
Angew Chem Int Ed Engl ; 58(33): 11257-11261, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31081241

RESUMO

We report on the one- and two-water clusters of [4]helicene, the smallest polycyclic aromatic hydrocarbon with a helical sense, which were captured in the gas phase using high-resolution rotational spectroscopy. The structures of the complexes are unambiguously revealed using microwave spectra of isotopically enriched species. In the one-water cluster, the apparent splitting pattern is consistent with a tunneling motion that encompasses an exchange of strongly and weakly bonded water hydrogens. This motion is "locked" in the two-water cluster. The relevant intermolecular contacts, symmetry, and aromaticity effects are unveiled for the microsolvated chiral topologies. These observations entail the first glance at the structures and internal dynamics of the water binding motifs of a chiral polycyclic aromatic hydrocarbon.

5.
Chemphyschem ; 19(1): 82-92, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29136312

RESUMO

Purely organic chiral molecular assemblies in the solid state hold great potential for non-linear optical applications. Herein, a newly synthesised molecular system is reported, namely, dicinnamalacetone, an otherwise planar molecule that crystallises in a disordered non-centrosymmetric form with four different conformations having an overall predominance of a particular helicity. A combined experimental and theoretical approach, including single-crystal X-ray diffraction, Kurtz-Perry and ab initio methods, is employed to characterise the system and benchmark the performance of hybrid functionals for the prediction of non-linear optical properties and electronic excitations. Comparison of experiment and theory points to a particular set of hybrid functionals that provides an optimal description of this molecular system.

6.
J Chem Phys ; 147(12): 124310, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28964033

RESUMO

We use high-resolution rotational spectroscopy to investigate the structural intricacies of the lactone form of mevalonic acid, precursor of the mevalonate pathway. By combining microwave spectroscopy with supersonic expansions and quantum-chemical calculations, we determine the two most stable conformations of the precursor. Complementary micro-solvation studies reveal that aggregation of the first water molecule induces a substantial structural rearrangement comprising a hydroxy rotation and an endocyclic core torsion to create a favourable geometry to accommodate the water molecule. We discuss the conformational aspects of the precursor in isolation and under micro-hydrated conditions.

7.
Angew Chem Int Ed Engl ; 56(41): 12512-12517, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28672055

RESUMO

We report the experimental demonstration of coherent enantiomer-selective enrichment of chiral molecules by employing a novel microwave five-pulse scheme. Our results show that enantiomers can be selectively transferred to a rotational level of choice by applying sequences of resonant microwave pulses in a phase- and polarization-controlled manner. This is achieved by simultaneously exciting all three kinds of electric dipole-allowed rotational transitions and monitoring the effect on a fourth rotational transition of choice. Using molecular beams, we apply our method to two chiral terpenes and obtain a 6 % enantiomeric enrichment, which is one order of magnitude larger than that recently reported in a buffer-gas cell experiment. This approach establishes a robust scheme for controlled manipulation of enantiomers using tailored microwave fields and opens up new avenues for chiral purification and enrichment that can be used in a broad scope of analytical or spectroscopic applications.

8.
Angew Chem Int Ed Engl ; 56(37): 11209-11212, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28556402

RESUMO

We present the first high-resolution rotational spectrum of an artificial molecular rotary motor. By combining chirped-pulse Fourier transform microwave spectroscopy and supersonic expansions, we captured the vibronic ground-state conformation of a second-generation motor based on chiral, overcrowded alkenes. The rotational constants were accurately determined by fitting more than 200 rotational transitions in the 2-4 GHz frequency range. Evidence for dissociation products allowed for the unambiguous identification and characterization of the isolated motor components. Experiment and complementary quantum-chemical calculations provide accurate geometrical parameters for the C27 H20 molecular motor, the largest molecule investigated by high-resolution microwave spectroscopy to date.

9.
Chemistry ; 22(2): 704-15, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26611817

RESUMO

A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low-energy conformers of dehydroquinidine reveals the existence of families of pseudo-conformers, the structures of which differ mostly in the orientation of a single O-H bond. The pseudo-conformers in a family are separated by very small energy barriers (i.e., 1.0 kcal mol(-1) or smaller) and have very different VCD spectra. First, we demonstrate the unreliable character of the Boltzmann factors predicted with DFT. Then, we show that the large differences observed between the VCD spectra of the pseudo-conformers in a family are caused by large-amplitude motions involving the O-H bond, which trigger the appearance/disappearance of strong VCD exciton-coupling bands in the fingerprint region. This interplay between exciton coupling and large-amplitude-motion phenomena demonstrates that when dealing with flexible molecules with polar bonds, vibrational averaging of VCD spectra should not be neglected. In this regard, the dehydroquinidine molecule considered here is expected to be a typical example and not the exception to the rule.

10.
Phys Chem Chem Phys ; 18(25): 16682-9, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27298210

RESUMO

Conformational flexibility is intrinsically related to the functionality of biomolecules. Elucidation of the potential energy surface is thus a necessary step towards understanding the mechanisms for molecular recognition such as docking of small organic molecules to larger macromolecular systems. In this work, we use broadband rotational spectroscopy in a molecular jet experiment to unravel the complex conformational space of citronellal. We observe fifteen conformations in the experimental conditions of the molecular jet, the highest number of conformers reported to date for a chiral molecule of this size using microwave spectroscopy. Studies of relative stability using different carrier gases in the supersonic expansion reveal conformational relaxation pathways that strongly favour ground-state structures with globular conformations. This study provides a blueprint of the complex conformational space of an important biosynthetic precursor and gives insights on the relation between its structure and biological functionality.

11.
J Chem Phys ; 145(16): 161103, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27802624

RESUMO

We report the observation of structural changes in an axially chiral molecule, biphenyl-2-carboxaldehyde, due to aggregation with water. Using high-resolution broadband rotational spectroscopy we find that two water molecules link opposite sides of the molecule, resembling a water wire. We show that this effect can be explained by a cooperative rearrangement of both molecule and a water dimer. Hydrogen bonding interactions are shown to change the original structure upon aggregation of water. This phenomenon is insightful on the role of microsolvation in assisting structural morphing of stereo-selective chiral molecular systems.

12.
Angew Chem Int Ed Engl ; 55(16): 4957-61, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26992036

RESUMO

Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6 K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from σ=4.7(3.0)×10(-18) cm(2) to σ>5×10(-16) cm(2). Our method is applicable to a broad class of molecules and could be used to provide information about the potential energy surfaces of previously uninvestigated molecules.

13.
J Am Chem Soc ; 137(16): 5468-79, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25844713

RESUMO

To fully characterize the Co(III)-'nitrene radical' species that are proposed as intermediates in nitrene transfer reactions mediated by cobalt(II) porphyrins, different combinations of cobalt(II) complexes of porphyrins and nitrene transfer reagents were combined, and the generated species were studied using EPR, UV-vis, IR, VCD, UHR-ESI-MS, and XANES/XAFS measurements. Reactions of cobalt(II) porphyrins 1(P1) (P1 = meso-tetraphenylporphyrin (TPP)) and 1(P2) (P2 = 3,5-Di(t)Bu-ChenPhyrin) with organic azides 2(Ns) (NsN3), 2(Ts) (TsN3), and 2(Troc) (TrocN3) led to the formation of mono-nitrene species 3(P1)(Ns), 3(P2)(Ts), and 3(P2)(Troc), respectively, which are best described as [Co(III)(por)(NR″(•-))] nitrene radicals (imidyl radicals) resulting from single electron transfer from the cobalt(II) porphyrin to the 'nitrene' moiety (Ns: R″ = -SO2-p-C6H5NO2; Ts: R″ = -SO2C6H6; Troc: R″ = -C(O)OCH2CCl3). Remarkably, the reaction of 1(P1) with N-nosyl iminoiodane (PhI═NNs) 4(Ns) led to the formation of a bis-nitrene species 5(P1)(Ns). This species is best described as a triple-radical complex [(por(•-))Co(III)(NR″(•-))2] containing three ligand-centered unpaired electrons: two nitrene radicals (NR″(•-)) and one oxidized porphyrin radical (por(•-)). Thus, the formation of the second nitrene radical involves another intramolecular one-electron transfer to the "nitrene" moiety, but now from the porphyrin ring instead of the metal center. Interestingly, this bis-nitrene species is observed only on reacting 4(Ns) with 1(P1). Reaction of the more bulky 1(P2) with 4(Ns) results again in formation of mainly mono-nitrene species 3(P2)(Ns) according to EPR and ESI-MS spectroscopic studies. The mono- and bis-nitrene species were initially expected to be five- and six-coordinate species, respectively, but XANES data revealed that both mono- and bis-nitrene species are six-coordinate O(h) species. The nature of the sixth ligand bound to cobalt(III) in the mono-nitrene case remains elusive, but some plausible candidates are NH3, NH2(-), NsNH(-), and OH(-); NsNH(-) being the most plausible. Conversion of mono-nitrene species 3(P1)(Ns) into bis-nitrene species 5(P1)(Ns) upon reaction with 4(Ns) was demonstrated. Solutions containing 3(P1)(Ns) and 5(P1)(Ns) proved to be still active in catalytic aziridination of styrene, consistent with their proposed key involvement in nitrene transfer reactions mediated by cobalt(II) porphyrins.


Assuntos
Cobalto/química , Iminas/química , Metaloporfirinas/química , Catálise , Ligantes , Modelos Moleculares , Oxirredução , Análise Espectral
14.
Chemphyschem ; 16(16): 3363-73, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26289778

RESUMO

Recent experimental observations of enhanced vibrational circular dichroism (VCD) in molecular systems with low-lying electronically excited states suggest interesting new applications of VCD spectroscopy. The theory describing VCD enhancement through vibronic coupling schemes was derived by Nafie in 1983, but only recently experimental evidence of VCD amplification has demonstrated the extent to which this effect can be exploited as a structure elucidation tool to probe local structure. In this Concept paper, we give an overview of the physics behind vibrational circular dichroism, in particular the equations governing the VCD amplification effect, and review the latest experimental developments with a prospective view on the application of amplified VCD to locally probe biomolecular structure.


Assuntos
Dicroísmo Circular , Animais , Cloretos/química , Cobalto/química , Complexos de Coordenação/química , Elétrons , Hemoglobinas/química , Humanos , Modelos Teóricos , Níquel/química , Estereoisomerismo , Compostos de Zinco/química
15.
J Chem Phys ; 142(21): 212444, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049464

RESUMO

Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a ß-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the ß-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.


Assuntos
Arginina/química , Ácido Glutâmico/química , Peptídeos/química , Ligação de Hidrogênio , Estrutura Molecular , Sais/química , Espectrofotometria Infravermelho
16.
J Am Chem Soc ; 136(9): 3530-5, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24506134

RESUMO

We show that the VCD signal intensities of amino acids and oligopeptides can be enhanced by up to 2 orders of magnitude by coupling them to a paramagnetic metal ion. If the redox state of the metal ion is changed from paramagnetic to diamagnetic the VCD amplification vanishes completely. From this observation and from complementary quantum-chemical calculations we conclude that the observed VCD amplification finds its origin in vibronic coupling with low-lying electronic states. We find that the enhancement factor is strongly mode dependent and that it is determined by the distance between the oscillator and the paramagnetic metal ion. This localized character of the VCD amplification provides a unique tool to specifically probe the local structure surrounding a paramagnetic ion and to zoom in on such local structure within larger biomolecular systems.


Assuntos
Dicroísmo Circular , Vibração , Aminoácidos/química , Cobalto/química , Dipeptídeos/química , Modelos Moleculares , Oligopeptídeos/química , Conformação Proteica
17.
Phys Chem Chem Phys ; 16(30): 15784-6, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24676430

RESUMO

Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them.

18.
Angew Chem Int Ed Engl ; 53(51): 14042-5, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25212702

RESUMO

A new method to detect the vibrational circular dichroism (VCD) of a localized part of a chiral molecular system is reported. A local VCD amplifier was implemented, and the distance dependence of the amplification was investigated in a series of peptides. The results indicate a characteristic distance of 2.0±0.3 bonds, which suggests that the amplification is a localized phenomenon. The amplifier can be covalently coupled to a specific part of a molecule, and can be switched ON and OFF electrochemically. By subtracting the VCD spectra obtained when the amplifier is in the ON and OFF states, the VCD of the local environment of the amplifier can be separated from the total VCD spectrum. Switchable local VCD amplification thus makes it possible to "zoom in" on a specific part of a chiral molecule.


Assuntos
Compostos Ferrosos/química , Sondas Moleculares/química , Peptídeos/química , Dicroísmo Circular , Metalocenos , Estrutura Molecular , Vibração
19.
Nat Commun ; 15(1): 4928, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858352

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely established as ubiquitous in the interstellar medium (ISM), but considering their prevalence in harsh vacuum environments, the role of ionisation in the formation of PAH clusters is poorly understood, particularly if a chirality-dependent aggregation route is considered. Here we report on photoelectron spectroscopy experiments on [4]helicene clusters performed with a vacuum ultraviolet synchrotron beamline. Aggregates (up to the heptamer) of [4]helicene, the smallest PAH with helical chirality, were produced and investigated with a combined experimental and theoretical approach using several state-of-the-art quantum-chemical methodologies. The ionisation onsets are extracted for each cluster size from the mass-selected photoelectron spectra and compared with calculations of vertical ionisation energies. We explore the complex aggregation topologies emerging from the multitude of isomers formed through clustering of P and M, the two enantiomers of [4]helicene. The very satisfactory benchmarking between experimental ionisation onsets vs. predicted ionisation energies allows the identification of theoretically predicted potential aggregation motifs and corresponding energetic ordering of chiral clusters. Our structural models suggest that a homochiral aggregation route is energetically favoured over heterochiral arrangements with increasing cluster size, hinting at potential symmetry breaking in PAH cluster formation at the scale of small grains.

20.
Water Res ; 254: 121426, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471203

RESUMO

Naegleria fowleri has been detected in drinking water distribution systems (DWDS) in Australia, Pakistan and the United States and is the causative agent of the highly fatal disease primary amoebic meningoencephalitis. Previous small scale field studies have shown that Meiothermus may be a potential biomarker for N. fowleri. However, correlations between predictive biomarkers in small sample sizes often breakdown when applied to larger more representative datasets. This study represents one of the largest and most rigorous temporal investigations of Naegleria fowleri colonisation in an operational DWDS in the world and measured the association of Meiothermus and N. fowleri over a significantly larger space and time in the DWDS. A total of 232 samples were collected from five sites over three-years (2016-2018), which contained 29 positive N. fowleri samples. Two specific operational taxonomic units assigned to M. chliarophilus and M. hypogaeus, were significantly associated with N. fowleri presence. Furthermore, inoculation experiments demonstrated that Meiothermus was required to support N. fowleri growth in field-collected biofilms. This validates Meiothermus as prospective biological tool to aid in the identification and surveillance of N. fowleri colonisable sites.


Assuntos
Água Potável , Naegleria fowleri , Estudos Prospectivos , Bactérias , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA