Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Psychiatry ; 26(1): 322-340, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31723242

RESUMO

Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation. Female mice received a single 4 Gy whole-brain radiation dose on postnatal day (PND) 21 and were randomized to 0.24% Li2CO3 chow or normal chow from PND 49 to 77. Hippocampal neurogenesis was assessed on PND 77, 91, and 105. We found that lithium treatment had a pro-proliferative effect on neural progenitors, but neuronal integration occurred only after it was discontinued. Also, the treatment ameliorated deficits in spatial learning and memory retention observed in irradiated mice. Gene expression profiling and DNA methylation analysis identified two novel factors related to the observed effects, Tppp, associated with microtubule stabilization, and GAD2/65, associated with neuronal signaling. Our results show that lithium treatment reverses irradiation-induced loss of hippocampal neurogenesis and cognitive impairment even when introduced long after the injury. We propose that lithium treatment should be intermittent in order to first make neural progenitors proliferate and then, upon discontinuation, allow them to differentiate. Our findings suggest that pharmacological treatment of cognitive so-called late effects in childhood cancer survivors is possible.


Assuntos
Cognição/efeitos dos fármacos , Compostos de Lítio/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/efeitos da radiação , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos
2.
J Immunol ; 192(3): 1138-53, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24353269

RESUMO

The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration. To further dissect pathways regulating complement expression, we performed genome-wide expression profiling and linkage analysis in a large F2(DA × PVG) intercross, which identified quantitative trait loci regulating expression of C1qa, C1qb, C3, and C9. Unlike C1qa, C1qb, and C9, which all displayed distinct coregulation with different cis-regulated C-type lectins, C3 was regulated in a coexpression network immediately downstream of butyrylcholinesterase. Butyrylcholinesterase hydrolyses acetylcholine, which exerts immunoregulatory effects partly through TNF-α pathways. Accordingly, increased C3, but not C1q, expression was demonstrated in rat and mouse glia following TNF-α stimulation, which was abrogated in a dose-dependent manner by acetylcholine. These findings demonstrate new pathways regulating CNS complement expression using unbiased mapping in an experimental in vivo system. A direct link between cholinergic activity and complement activation is supported by in vitro experiments. The identification of distinct pathways subjected to regulation by naturally occurring genetic variability is of relevance for the understanding of disease mechanisms in neurologic conditions characterized by neuronal injury and complement activation.


Assuntos
Sistema Nervoso Central/metabolismo , Fibras Colinérgicas/fisiologia , Ativação do Complemento , Complemento C3/biossíntese , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes , Acetilcolina/farmacologia , Acetilcolina/fisiologia , Animais , Animais Congênicos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Lesões Encefálicas/imunologia , Lesões Encefálicas/fisiopatologia , Butirilcolinesterase/fisiologia , Células Cultivadas , Sistema Nervoso Central/química , Sistema Nervoso Central/patologia , Complemento C1q/biossíntese , Complemento C1q/genética , Complemento C3/genética , Denervação , Fatores de Transcrição Forkhead/metabolismo , Ligação Genética , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Locos de Características Quantitativas , Ratos , Rizotomia , Organismos Livres de Patógenos Específicos , Raízes Nervosas Espinhais/cirurgia , Sinaptofisina/análise , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
3.
J Neuroinflammation ; 12: 192, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26502875

RESUMO

BACKGROUND: Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking. METHODS: Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA). Expression of Cr2 in the spinal cord was studied in a separate cohort of DA and PVG rats at different time-points after VRA, and also following sciatic nerve transection (SNT) in the same strains. Consequently, Cr2 (-/-) mice and Wt controls were used to further explore the role of Cr2 in the spinal cord following SNT. The in vivo experiments were complemented by astrocyte and microglia cell cultures. RESULTS: Expression of Cr2 in naïve spinal cord was low but strongly up regulated at 5-7 days after both VRA and SNT. Levels of Cr2 expression, as well as astrocyte activation, was higher in PVG rats than DA rats following both VRA and SNT. Subsequent in vitro studies proposed astrocytes as the main source of Cr2 expression. A functional role for Cr2 is suggested by the finding that transgenic mice lacking Cr2 displayed increased loss of synaptic nerve terminals following nerve injury. We also detected increased levels of soluble CR2 (sCR2) in the cerebrospinal fluid of rats following VRA. CONCLUSIONS: These results demonstrate that local expression of Cr2 in the central nervous system is part of the axotomy reaction and is suggested to modulate subsequent complement mediated effects.


Assuntos
Receptores de Complemento 3d/metabolismo , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia , Regulação para Cima/fisiologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Astrócitos/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Lateralidade Funcional , Redes Reguladoras de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Transgênicos , Análise em Microsséries , Microglia/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores de Complemento 3d/genética , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Sinaptofisina/metabolismo
4.
Mol Pain ; 10: 78, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25492810

RESUMO

INTRODUCTION: Neuropathic pain is believed to be influenced in part by inflammatory processes. In this study we examined the effect of variability in the C-type lectin gene cluster (Aplec) on the development of neuropathic pain-like behavior after ligation of the L5 spinal nerve in the inbred DA and the congenic Aplec strains, which carries seven C-type lectin genes originating from the PVG strain. RESULTS: While both strains displayed neuropathic pain behavior early after injury, the Aplec strain remained sensitive throughout the whole study period. Analyses of several mRNA transcripts revealed that the expression of Interleukin-1ß, Substance P and Cathepsin S were more up-regulated in the dorsal part of the spinal cord of Aplec rats compared to DA, indicating a stronger inflammatory response. This notion was supported by flow cytometric analysis revealing increased infiltration of activated macrophages into the spinal cord. In addition, macrophages from the Aplec strain stimulated in vitro displayed higher expression of inflammatory cytokines compared to DA cells. Finally, we bred a recombinant congenic strain (R11R6) comprising only four of the seven Aplec genes, which displayed similar clinical and immune phenotypes as the Aplec strain. CONCLUSION: We here for the first time demonstrate that C-type lectins, a family of innate immune receptors with largely unknown functions in the nervous system, are involved in regulation of inflammation and development of neuropathic pain behavior after nerve injury. Further experimental and clinical studies are needed to dissect the underlying mechanisms more in detail as well as any possible relevance for human conditions.


Assuntos
Lectinas Tipo C/genética , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Catepsinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Inflamação , Interleucina-1beta/metabolismo , Masculino , Modelos Genéticos , Família Multigênica , Neuralgia/terapia , Neuropeptídeos/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Ratos , Receptores de Interleucina-8A/metabolismo , Transdução de Sinais , Substância P/metabolismo
5.
J Neuroinflammation ; 10: 60, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23656637

RESUMO

BACKGROUND: C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection. METHODS: The inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains. RESULTS: Global expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury. CONCLUSIONS: In summary, we demonstrate that a genetic variation in Aplec occurring among inbred strains regulates both survival of axotomized motor neurons and the degree of lymphocyte infiltration. These results demonstrate a hitherto unknown role for CLECs for intercellular communication that occurs after damage to the nervous system, which is relevant for neuronal survival.


Assuntos
Lectinas Tipo C/genética , Neurônios Motores/fisiologia , Família Multigênica/genética , Radiculopatia/genética , Radiculopatia/patologia , Linfócitos T/fisiologia , Animais , Animais Congênicos , Apresentação de Antígeno , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Astrócitos/metabolismo , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Lectinas Tipo C/metabolismo , Análise em Microsséries , Microglia/metabolismo , Proteínas da Mielina/metabolismo , Oligodendroglia/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Raízes Nervosas Espinhais/patologia
6.
Neuroscience ; 405: 92-102, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101080

RESUMO

Brain injury is associated with neuroinflammation, and microglia are key players in this process. Microglia can acquire pro-inflammatory or anti-inflammatory properties, but how this affects neural stem cells (NSCs) remains controversial. Here, NSCs were grown in conditioned media collected from either non-stimulated microglia, or microglia stimulated with pro- or anti-inflammatory agents. NSC survival, proliferation, migration, and differentiation were investigated thereafter. We found that NSCs kept in conditioned medium from the anti-inflammatory microglial subtype had better survival, increased migration, and lower astrocytic differentiation compared to NSCs grown in conditioned medium collected from the pro-inflammatory subtype. Finally, we found that NSCs differentiated in microglial conditioned media generated cells expressing the pro-inflammatory chemokine CCL2, most pronounced when differentiated in medium from the pro-inflammatory microglia subtype. Our results show that microglial subtypes regulate NSCs differently and induce generation of cells with inflammatory properties.


Assuntos
Citocinas/metabolismo , Microglia/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Citocinas/biossíntese , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
7.
Neurosci Lett ; 442(3): 284-6, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18640240

RESUMO

We have previously demonstrated that differences in neuropathic pain-like behaviors after sciatic nerve injury genetically maps to the major histocompatibility complex (MHC) in rats carrying RT1(c) or RT1(av1) haplotypes on the Piebald Virol Glaxo (PVG) background. In order to further explore the genetic contribution to neuropathic pain, we have here examined the MHC-congenic rat strains PVG-RT1(n) and PVG-RT1(av1) and the inbred strains PVG (RT1(c)) and Brown-Norway (BN; RT1(n)). All studied strains developed mechanical hypersensitivity (allodynia-like behavior) of the hind paw after photochemically induced sciatic nerve injury. However, the PVG-RT1(n) and PVG strains displayed significantly more allodynia than PVG-RT1(av1) and BN rats. In addition, the BN strain demonstrated an elevated threshold for the baseline response. The results demonstrate that both MHC and non-MHC genes influence experimental neuropathic pain in rats and also suggest that allelic variation contained in the RT1(av1) haplotype on the PVG background protects against neuropathic pain.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Neuralgia/genética , Animais , Animais Congênicos , Ratos , Nervo Isquiático/lesões
8.
Neurosci Lett ; 443(2): 95-8, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18675884

RESUMO

We have recently shown that the major histocompatibility complex (MHC) exerts a regulatory influence on the development of neuropathic pain-like behaviors after partial sciatic nerve injury in male rats. In the present study, we assessed the role of the MHC in peripheral nerve injury-induced pain as well as central pain following spinal cord injury in female rats using the following inbred strains: Dark Agouti (DA; RT1(av1)), Piebald Virol Glaxo (PVG; RT1(c)) and in the MHC-congenic strain PVG-RT1(av1). In line with our previous observation in male rats, PVG-RT1(c) displayed more severe allodynia compared to the strains carrying the RT1(av1) haplotype (PVG-RT1(av1) and DA-RT1(av1)) following sciatic nerve injury in female rats. However, the MHC did not seem to impact the development of allodynia following spinal cord injury since the two congenic strains PVG-RT1(c) and PVG-RT1(av) did not differ after spinal cord injury. Interestingly, the DA-RT1(av1) strain displayed significantly more severe allodynia than both PVG strains and this difference was not explained by the extent of spinal cord injury. These results suggest that there are differences in the genetic mechanisms for neuropathic pain development following peripheral or central nervous system injury, both in regarding to the role of the MHC complex as well as non-MHC genes.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Neuralgia/genética , Neuropatia Ciática/genética , Isquemia do Cordão Espinal/genética , Animais , Animais Congênicos , Feminino , Hiperalgesia/genética , Masculino , Ratos , Neuropatia Ciática/complicações , Isquemia do Cordão Espinal/complicações
9.
Oncotarget ; 7(50): 82305-82323, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27793054

RESUMO

The relative contribution of resident microglia and peripheral monocyte-derived macrophages in neuroinflammation after cranial irradiation is not known. A single dose of 8 Gy was administered to postnatal day 10 (juvenile) or 90 (adult) CX3CR1GFP/+ CCR2RFP/+ mouse brains. Microglia accumulated in the subgranular zone of the hippocampal granule cell layer, where progenitor cell death was prominent. The peak was earlier (6 h vs. 24 h) but less pronounced in adult brains. The increase in juvenile, but not adult, brains was partly attributed to proliferation. Microglia numbers then decreased over time to 39% (juvenile) and 58% (adult) of controls 30 days after irradiation, largely as a result of cell death. CD68 was expressed in 90% of amoeboid microglia in juvenile hippocampi but only in 9% of adult ones. Isolated hippocampal microglia revealed reduced CD206 and increased IL1-beta expression after irradiation, more pronounced in juvenile brains. CCL2 and IL-1 beta increased after irradiation, more in juvenile hippocampi, and remained elevated at all time points. In summary, microglia activation after irradiation was more pronounced, protracted and pro-inflammatory by nature in juvenile than in adult hippocampi. Common to both ages was long-lasting inflammation and the absence of monocyte-derived macrophages.


Assuntos
Proliferação de Células/efeitos da radiação , Irradiação Craniana/efeitos adversos , Encefalite/etiologia , Hipocampo/efeitos da radiação , Microglia/efeitos da radiação , Lesões por Radiação/etiologia , Fatores Etários , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Morte Celular , Quimiocina CCL2/metabolismo , Encefalite/metabolismo , Encefalite/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-1beta/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Receptores CCR2/genética , Fatores de Tempo , Proteína Vermelha Fluorescente
10.
Pain ; 154(3): 427-433, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23318129

RESUMO

Neuropathic pain conditions are common after nerve injuries and are suggested to be regulated in part by genetic factors. We have previously demonstrated a strong genetic influence of the rat major histocompatibility complex on development of neuropathic pain behavior after peripheral nerve injury. In order to study if the corresponding human leukocyte antigen complex (HLA) also influences susceptibility to pain, we performed an association study in patients that had undergone surgery for inguinal hernia (n=189). One group had developed a chronic pain state following the surgical procedure, while the control group had undergone the same type of operation, without any persistent pain. HLA DRB1genotyping revealed a significantly increased proportion of patients in the pain group carrying DRB1*04 compared to patients in the pain-free group. Additional typing of the DQB1 gene further strengthened the association; carriers of the DQB1*03:02 allele together with DRB1*04 displayed an increased risk of postsurgery pain with an odds risk of 3.16 (1.61-6.22) compared to noncarriers. This finding was subsequently replicated in the clinical material of patients with lumbar disc herniation (n=258), where carriers of the DQB1*03:02 allele displayed a slower recovery and increased pain. In conclusion, we here for the first time demonstrate that there is an HLA-dependent risk of developing pain after surgery or lumbar disc herniation; mediated by the DRB1*04 - DQB1*03:02 haplotype. Further experimental and clinical studies are needed to fine-map the HLA effect and to address underlying mechanisms.


Assuntos
Dor Crônica/genética , Discotomia , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Hérnia Inguinal/cirurgia , Herniorrafia , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Neuralgia/genética , Dor Pós-Operatória/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Dor Crônica/etiologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Hérnia Inguinal/fisiopatologia , Humanos , Deslocamento do Disco Intervertebral/fisiopatologia , Masculino , Pessoa de Meia-Idade , Neuralgia/etiologia , Dor Pós-Operatória/etiologia , Traumatismos dos Nervos Periféricos/etiologia , Traumatismos dos Nervos Periféricos/genética , Risco , Suécia/epidemiologia , Adulto Jovem
11.
Gend Med ; 6 Suppl 2: 225-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19406371

RESUMO

BACKGROUND: Neuropathic pain after injury to the nervous system is a difficult clinical problem. Sex differences in the development of neuropathic pain have not been well established experimentally or clinically. OBJECTIVE: Rats were used to examine sex differences in localized and spread mechanical hypersensitivity after partial injury to their infraorbital or sciatic nerves in a model of neuropathic pain. METHODS: In adult female and male rats, partial nerve injury to the infraorbital and sciatic nerves was produced using a photochemical method. Mechanical hypersensitivity (allodynia) was examined and compared in the innervation territories of the nerves on the face or hind paw. The spread of hypersensitivity beyond the innervation territories of the injured nerves was also studied. The female and male rats were randomized to active and sham groups. The rats in the sham group had their sciatic or infraorbital nerve exposed, but not injured. RESULTS: A total of 67 rats (36 females, 31 males) were used. There was a marked sex difference in the response to infraorbital nerve injury: female rats developed more profound and long-lasting facial hypersensitivity than did male rats (P<0.001). Hypersensitivity of the hind paw after sciatic nerve injury did not, however, significantly differ between female and male rats. Spread mechanical hypersensitivity was noted in body areas outside the innervation territory of the injured nerve. This hypersensitivity was more profound after infraorbital than sciatic nerve injury and also displayed a significant sex difference (female>male, P < 0.001). Sham-group rats did not exhibit localized or spread mechanical hypersensitivity. CONCLUSION: Sex differences in the development of neuropathic painlike behaviors in rats were dependent on site of injury and site of testing, with female rats being more susceptible to the development of spread mechanical hypersensitivity, particularly after facial nerve injury, compared with male rats.


Assuntos
Traumatismos dos Nervos Cranianos/etiologia , Dor Facial/fisiopatologia , Hipersensibilidade/etiologia , Nervo Isquiático/lesões , Diferenciação Sexual , Neuralgia do Trigêmeo/fisiopatologia , Análise de Variância , Animais , Feminino , Masculino , Modelos Teóricos , Ratos , Neuropatia Ciática/etiologia , Fatores Sexuais
12.
Pain ; 136(3): 313-319, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17764842

RESUMO

Neuropathic pain is a common consequence of damage to the nervous system. We here report a genetic analysis of development of neuropathic pain-like behaviors after unilateral photochemically-induced ischemic sciatic nerve injury in a panel of inbred rat strains known to display different susceptibility to autoimmune neuroinflammation. Pain behavior was initially characterized in Dark-Agouti (DA; RT1(av1)), Piebald Virol Glaxo (PVG; RT1(c)), and in the major histocompatibility complex (MHC)-congenic strain PVG-RT1(av1). All strains developed mechanical hypersensitivity (allodynia) following nerve injury. However, the extent and duration of allodynia varied significantly among the strains, with PVG displaying more severe allodynia compared to DA rats. Interestingly, the response of PVG-RT1(avRT1) was similar to that of DA, suggesting regulation by the MHC locus. This notion was subsequently confirmed in an F2 cohort derived from crossing of the PVG and PVG-RT1(av1)strains, where allodynia was reduced in homozygous or heterozygous carriers of the RT1(av1) allele in comparison to rats homozygous for the RT1(c) allele. These results indicate that certain allelic variants of the MHC could influence susceptibility to develop and maintain neuropathic pain-like behavior following peripheral nerve injury in rats.


Assuntos
Comportamento Animal , Hiperestesia/genética , Complexo Principal de Histocompatibilidade/genética , Neuralgia/genética , Doenças do Sistema Nervoso Periférico/genética , Tato/genética , Animais , Feminino , Predisposição Genética para Doença/genética , Masculino , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA