Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(11): 6171-6182, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38597676

RESUMO

Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.


Assuntos
Dano ao DNA , Estruturas R-Loop , RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/metabolismo , Linhagem Celular Tumoral , Instabilidade Genômica/genética , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Linfoma Anaplásico de Células Grandes/metabolismo , Regulação Neoplásica da Expressão Gênica , DNA Helicases/genética , DNA Helicases/metabolismo , Regiões Promotoras Genéticas , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia
2.
Histopathology ; 85(1): 62-74, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38477417

RESUMO

AIMS: Tumour necrosis and/or increased mitoses define high-grade papillary thyroid carcinoma (PTC). It is unclear whether angioinvasion is prognostic for PTC. Cut-offs at five or more mitoses/2 mm2 and four or more angioinvasive foci have been empirically defined based upon data from all forms of aggressive non-anaplastic thyroid carcinomas. Performance of tumour necrosis, mitoses and vascular invasion in predicting distant metastases when specifically applied to PTC is undefined. METHODS: We analysed 50 consecutive PTC cases with distant metastases (DM-PTC): 16 synchronous and 34 metachronous. A total of 108 non-metastatic PTC (N-DM-PTC, 15.0-year median follow-up) were used as controls. Invasive encapsulated follicular variant PTC was excluded. Necrosis, mitoses and angioinvasion were quantified. Receiver operating characteristics (ROC) and area under the curve (AUC) analyses determined best sensitivity and specificity cut-offs predictive of distant metastases. RESULTS: Metastases correlated with necrosis (any extent = 43.8% all DM-PTC, 53.1% metachronous DM-PTC versus 5% N-DM-PTC; P < 0.001), mitoses (P < 0.001) and angioinvasion (P < 0.001). Mitoses at five or more per 2 mm2 was the best cut-off correlating with distant metastases: sensitivity/specificity 42.9%/97.2% all DM-PTC (AUC = 0.78), 18.8%/97.2% synchronous DM-PTC (AUC = 0.63), 54.6%/97.2% metachronous DM-PTC (AUC = 0.85). Angioinvasive foci at five or more was the best cut-off correlating with distant metastases: sensitivity/specificity 36.2%/91.7% all DM-PTC (AUC = 0.75), 25%/91.7% synchronous DM-PTC (AUC = 0.79) and 41.9%/91.7% metachronous DM-PTC (AUC = 0.73). Positive/negative predictive values (PPV/NPV) were: necrosis 22.6%/98.2%; five or more mitoses 32.3%/98.2%; five or more angioinvasive foci 11.8%/97.9%. After multivariable analysis, only necrosis and mitotic activity remained associated with DM-PTC. CONCLUSION: Our data strongly support PTC grading, statistically validating World Health Organisation (WHO) criteria to identify poor prognosis PTC. Angioinvasion is not an independent predictor of DM-PTC.


Assuntos
Necrose , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Masculino , Neoplasias da Glândula Tireoide/patologia , Feminino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/patologia , Adulto , Prognóstico , Estudos de Casos e Controles , Idoso , Organização Mundial da Saúde , Invasividade Neoplásica , Carcinoma Papilar/patologia , Mitose , Adulto Jovem
3.
Haematologica ; 108(12): 3333-3346, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37381763

RESUMO

Long non-coding RNA (lncRNA) are emerging as powerful and versatile regulators of transcriptional programs and distinctive biomarkers of progression of T-cell lymphoma. Their role in the aggressive anaplastic lymphoma kinase-negative (ALK-) subtype of anaplastic large cell lymphoma (ALCL) has been elucidated only in part. Starting from our previously identified ALCL-associated lncRNA signature and performing digital gene expression profiling of a retrospective cohort of ALCL, we defined an 11 lncRNA signature able to discriminate among ALCL subtypes. We selected a not previously characterized lncRNA, MTAAT, with preferential expression in ALK- ALCL, for molecular and functional studies. We demonstrated that lncRNA MTAAT contributes to an aberrant mitochondrial turnover restraining mitophagy and promoting cellular proliferation. Functionally, lncRNA MTAAT acts as a repressor of a set of genes related to mitochondrial quality control via chromatin reorganization. Collectively, our work demonstrates the transcriptional role of lncRNA MTAAT in orchestrating a complex transcriptional program sustaining the progression of ALK- ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , RNA Longo não Codificante , Humanos , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , RNA Longo não Codificante/genética , Mitofagia/genética , Estudos Retrospectivos , Linfoma Anaplásico de Células Grandes/patologia
4.
Hematol Oncol ; 40(4): 645-657, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35606338

RESUMO

We evaluated the prognostic role of the largest distance between two lesions (Dmax), defined by positron emission tomography (PET) in a retrospective cohort of newly diagnosed classical Hodgkin Lymphoma (cHL) patients. We also explored the molecular bases underlying Dmax through a gene expression analysis of diagnostic biopsies. We included patients diagnosed with cHL from 2007 to 2020, initially treated with ABVD, with available baseline PET for review, and with at least two FDG avid lesions. Patients with available RNA from diagnostic biopsy were eligible for gene expression analysis. Dmax was deduced from the three-dimensional coordinates of the baseline metabolic tumor volume (MTV) and its effect on progression free survival (PFS) was evaluated. Gene expression profiles were correlated with Dmax and analyzed using CIBERSORTx algorithm to perform deconvolution. The study was conducted on 155 eligible cHL patients. Using its median value of 20 cm, Dmax was the only variable independently associated with PFS (HR = 2.70, 95% CI 1.1-6.63, pValue = 0.03) in multivariate analysis of PFS for all patients and for those with early complete metabolic response (iPET-). Among patients with iPET-low Dmax was associated with a 4-year PFS of 90% (95% CI 82.0-98.9) significantly better compared to high Dmax (4-year PFS 72.4%, 95% CI 61.9-84.6). From the analysis of gene expression profiles differences in Dmax were mostly associated with variations in the expression of microenvironmental components. In conclusion our results support tumor dissemination measured through Dmax as novel prognostic factor for cHL patients treated with ABVD.


Assuntos
Doença de Hodgkin , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bleomicina/uso terapêutico , Dacarbazina/uso terapêutico , Doxorrubicina/uso terapêutico , Fluordesoxiglucose F18/uso terapêutico , Genômica , Doença de Hodgkin/diagnóstico por imagem , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/genética , Humanos , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , RNA/uso terapêutico , Estudos Retrospectivos , Vimblastina/uso terapêutico
5.
Hematol Oncol ; 39(2): 205-214, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33215701

RESUMO

The primary function of 25(OH)Vitamin D (VitD) is to control calcium; however, recent evidence associated serum VitD deficiency to high aggressiveness and worse outcome in different type of malignancies including lymphomas, and the reasons of such effect are to be defined. In this study, we investigated the association of VitD blood levels with gene expression in a retrospective cohort of 181 lymphomas (104 diffuse large B-cell lymphomas [DLBCLs] and 77 classical Hodgkin's lymphomas [cHLs]) of whom 116 with available gene expression profiles (52 DLBCLs and 64 cHLs, respectively). In DLBCL, VitD deficiency did not cause significant alteration in gene expression suggesting different mechanisms of action including a possible systemic effect or an effect on pharmacokinetics. By contrast, in cHLs, VitD deficiency induced profound changes in the transcriptional program leading to the NF-κB-mediated activation of stress-protective and pro-survival pathways. Coherently, VitD signaling defined by vitamin D Receptor (VDR) expression analysis, resulted highly activated in cHLs but not in DLBCLs. Even if preliminary, these data represent the first evidence of a direct role of VitD in the biology of cHL and suggest a multimodality and disease-specific activity of this vitamin in lymphomas.


Assuntos
Doença de Hodgkin/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Vitamina D/uso terapêutico , Adulto , Humanos , Transcriptoma , Vitamina D/sangue , Vitamina D/farmacologia
6.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200515

RESUMO

Telomere and telomerase regulation contributes to the onset and evolution of several tumors, including highly aggressive thyroid cancers (TCs). TCs are the most common endocrine malignancies and are generally characterized by a high rate of curability. However, a small but significant percentage develops distant metastasis or progresses into undifferentiated forms associated with bad prognosis and for which poor therapeutic options are available. Mutations in telomerase reverse transcriptase (TERT) promoter are among the most credited prognostic marker of aggressiveness in TCs. Indeed, their frequency progressively increases passing from indolent lesions to aggressive and anaplastic forms. TERT promoter mutations create binding sites for transcription factors, increasing TERT expression and telomerase activity. Furthermore, aggressiveness of TCs is associated with TERT locus amplification. These data encourage investigating telomerase regulating pathways as relevant drivers of TC development and progression to foster the identification of new therapeutics targets. Here, we summarize the current knowledge about telomere regulation and TCs, exploring both canonical and less conventional pathways. We discuss the possible role of telomere homeostasis in mediating response to cancer therapies and the possibility of using epigenetic drugs to re-evaluate the use of telomerase inhibitors. Combined treatments could be of support to currently used therapies still presenting weaknesses.


Assuntos
Biomarcadores Tumorais/genética , Telomerase/genética , Homeostase do Telômero , Neoplasias da Glândula Tireoide/genética , Animais , Humanos , Mutação , Telomerase/metabolismo , Neoplasias da Glândula Tireoide/patologia
7.
Mol Cancer ; 17(1): 164, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466442

RESUMO

BRD4, member of the Bromodomain and Extraterminal (BET) protein family, is largely acknowledged in cancer for its role in super-enhancers (SEs) organization and oncogenes expression regulation. Inhibition of BRD4 shortcuts the communication between SEs and target promoters with a subsequent cell-specific repression of oncogenes to which cancer cells are addicted and cell death. To date, this is the most credited mechanism of action of BET inhibitors, a class of small molecules targeting BET proteins which are currently in clinical trials in several cancer settings.However, recent evidence indicates that BRD4 relevance in cancer goes beyond its role in transcription regulation and identifies this protein as a keeper of genome stability.Indeed, a non-transcriptional role of BRD4 in controlling DNA damage checkpoint activation and repair as well as telomere maintenance has been proposed, throwing new lights into the multiple functions of this protein and opening new perspectives on the use of BETi in cancer. Here we discuss the current available information on non-canonical, non-transcriptional functions of BRD4 and on their implications in cancer biology. Integrating this information with the already known BRD4 role in gene expression regulation, we propose a "common" model to explain BRD4 genomic function. Furthermore, in light of the transversal function of BRD4, we provide new interpretation for the cytotoxic activity of BETi and we discuss new possibilities for a wide and focused employment of these drugs in clinical settings.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Proteínas de Ciclo Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Dano ao DNA , Humanos , Neoplasias/patologia , Proteínas Nucleares/genética , Telômero/genética , Telômero/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Iniciação da Transcrição Genética
8.
Hepatology ; 63(3): 787-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26605757

RESUMO

UNLABELLED: The patatin-like phosholipase domain-containing 3 (PNPLA3) rs738409 polymorphism (I148M) is a major determinant of hepatic fat and predisposes to the full spectrum of liver damage in nonalcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate whether additional PNPLA3 coding variants contribute to NAFLD susceptibility, first in individuals with contrasting phenotypes (with early-onset NAFLD vs. very low aminotransferases) and then in a large validation cohort. Rare PNPLA3 variants were not detected by sequencing coding regions and intron-exon boundaries either in 142 patients with early-onset NAFLD nor in 100 healthy individuals with alanine aminotransferase <22/20 IU/mL. Besides rs738409 I148M, the rs2294918 G>A polymorphism (E434K sequence variant) was over-represented in NAFLD (adjusted P = 0.01). In 1,447 subjects with and without NAFLD, the 148M-434E (P < 0.0001), but not the 148M-434K, haplotype (P > 0.9), was associated with histological NAFLD and steatohepatitis. Both the I148M (P = 0.0002) and E434K variants (P = 0.044) were associated with serum ALT levels, by interacting with each other, in that the 434K hampered the association with liver damage of the 148M allele (P = 0.006). The E434K variant did not affect PNPLA3 enzymatic activity, but carriers of the rs2294918 A allele (434K) displayed lower hepatic PNPLA3 messenger RNA and protein levels (P < 0.05). CONCLUSIONS: Rare loss-of-function PNPLA3 variants were not detected in early-onset NAFLD. However, PNPLA3 rs2294918 E434K decreased PNPLA3 expression, lessening the effect of the I148M variant on the predisposition to steatosis and liver damage. This suggests that the PNPLA3 I148M variant has a codominant negative effect on triglycerides mobilization from lipid droplets, mediated by inhibition of other lipases.


Assuntos
Lipase/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Adolescente , Adulto , Alanina Transaminase/sangue , Estudos de Casos e Controles , Criança , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Polimorfismo de Nucleotídeo Único
9.
Int J Mol Sci ; 17(3): 383, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26999107

RESUMO

Telomeres consist of repeat DNA sequences located at the terminal portion of chromosomes that shorten during mitosis, protecting the tips of chromosomes. During chronic degenerative conditions associated with high cell replication rate, progressive telomere attrition is accentuated, favoring senescence and genomic instability. Several lines of evidence suggest that this process is involved in liver disease progression: (a) telomere shortening and alterations in the expression of proteins protecting the telomere are associated with cirrhosis and hepatocellular carcinoma; (b) advanced liver damage is a feature of a spectrum of genetic diseases impairing telomere function, and inactivating germline mutations in the telomerase complex (including human Telomerase Reverse Transcriptase (hTERT) and human Telomerase RNA Component (hTERC)) are enriched in cirrhotic patients independently of the etiology; and (c) experimental models suggest that telomerase protects from liver fibrosis progression. Conversely, reactivation of telomerase occurs during hepatocarcinogenesis, allowing the immortalization of the neoplastic clone. The role of telomere attrition may be particularly relevant in the progression of nonalcoholic fatty liver, an emerging cause of advanced liver disease. Modulation of telomerase or shelterins may be exploited to prevent liver disease progression, and to define specific treatments for different stages of liver disease.


Assuntos
Hepatopatias/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Telômero/genética , Progressão da Doença , Humanos , Hepatopatias/genética , Hepatopatias/metabolismo , Mutação , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA/metabolismo , Complexo Shelterina , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/metabolismo
10.
Hepatology ; 59(6): 2170-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24114809

RESUMO

UNLABELLED: The incidence of hepatocellular carcinoma (HCC) is increasing in Western countries. Although several clinical factors have been identified, many individuals never develop HCC, suggesting a genetic susceptibility. However, to date, only a few single-nucleotide polymorphisms have been reproducibly shown to be linked to HCC onset. A variant (rs738409 C>G, encoding for p.I148M) in the PNPLA3 gene is associated with liver damage in chronic liver diseases. Interestingly, several studies have reported that the minor rs738409[G] allele is more represented in HCC cases in chronic hepatitis C (CHC) and alcoholic liver disease (ALD). However, a significant association with HCC related to CHC has not been consistently observed, and the strength of the association between rs738409 and HCC remains unclear. We performed a meta-analysis of individual participant data including 2,503 European patients with cirrhosis to assess the association between rs738409 and HCC, particularly in ALD and CHC. We found that rs738409 was strongly associated with overall HCC (odds ratio [OR] per G allele, additive model=1.77; 95% confidence interval [CI]: 1.42-2.19; P=2.78 × 10(-7) ). This association was more pronounced in ALD (OR=2.20; 95% CI: 1.80-2.67; P=4.71 × 10(-15) ) than in CHC patients (OR=1.55; 95% CI: 1.03-2.34; P=3.52 × 10(-2) ). After adjustment for age, sex, and body mass index, the variant remained strongly associated with HCC. CONCLUSION: Overall, these results suggest that rs738409 exerts a marked influence on hepatocarcinogenesis in patients with cirrhosis of European descent and provide a strong argument for performing further mechanistic studies to better understand the role of PNPLA3 in HCC development.


Assuntos
Carcinoma Hepatocelular/genética , Lipase/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Hepatite C Crônica/complicações , Humanos , Cirrose Hepática Alcoólica/complicações , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , População Branca
11.
Hepatology ; 58(4): 1245-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23564580

RESUMO

UNLABELLED: Steatosis is a common histopathological feature of chronic hepatitis B (CHB) and has been associated with severity of liver disease. Recently, the rs738409 I148M patatin-like phospholipase domain-containing 3 (PNPLA3) polymorphism has been demonstrated to influence steatosis susceptibility and fibrosis progression in patients with different liver diseases, but no data are yet available for CHB. The aim of this study was to evaluate whether PNPLA3 I148M influences steatosis susceptibility in a large series of patients with CHB. We enrolled 235 treatment-naïve CHB patients consecutively examined by percutaneous liver biopsy. In ≥2-cm-long liver tissue cores, steatosis and fibrosis were staged by Kleiner and METAVIR scores, respectively. The I148M polymorphism was determined by Taqman assays. Steatosis was present in 146 (62%) patients, of whom 24 (10%) had severe (>33% of hepatocytes) steatosis. Steatosis was independently associated with age (odds ratio [OR]: 2.67; confidence interval [CI]: 1.50-4.92; for age ≥50 years), body mass index (BMI; OR, 2.84; CI, 1.30-6.76; for BMI ≥27.5 kg/m(2) ), diabetes or impaired fasting glucose (OR, 4.45; CI, 1.10-30.0), and PNPLA3 148M allele (OR, 1.62; CI, 1.00-7.00; for each 148M allele). Independent predictors of severe steatosis were BMI (OR, 3.60; CI, 1.39-9.22; for BMI ≥27.5 kg/m(2) ) and PNPLA3 148M allele (OR, 6.03; CI, 1.23-5.0; for each 148M allele). PNPLA3 148M alleles were associated with a progressive increase in severe steatosis in patients with acquired cofactors, such severe overweight and a history of alcohol intake (P = 0.005). CONCLUSION: In CHB patients, the PNPLA3 I148M polymorphism influences susceptibility to steatosis and, in particular, when associated with severe overweight and alcohol intake, severe steatosis.


Assuntos
Fígado Gorduroso/epidemiologia , Fígado Gorduroso/genética , Predisposição Genética para Doença/genética , Hepatite B Crônica/complicações , Lipase/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Alcoolismo/complicações , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Prevalência , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
12.
J Pediatr Gastroenterol Nutr ; 58(5): 632-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24345846

RESUMO

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in industrialized countries in adults and children, following the trail of the epidemic diffusion of obesity. Nonalcoholic steatohepatitis (NASH) is a potentially serious form of NAFLD linked with a significant increase in overall and liver-related morbidity and mortality. Because diagnosis still requires liver biopsy, there is urgent need of developing noninvasive early markers. The aim of the present study was to assess whether the simultaneous detection of genetic risk factors could predict NASH. METHOD: We enrolled 152 untreated, consecutive obese children and adolescents with biopsy-proven NAFLD and increased liver enzymes. The PNPLA3 rs738409 C>G (I148 M), SOD2 rs4880 C>T, KLF6 rs3750861 G>A, and LPIN1 rs13412852 C>T polymorphisms were detected by Taqman assays. RESULTS: A multivariate logistic model based on the genetic risk factors significantly predicted NASH (area under the receiver-operating characteristic curve [AUC] 0.75, 95% confidence interval [CI] 0.67-0.82, P < 0.0001), performing better than a clinical risk score identified at stepwise regression based on age, aspartate aminotransferase levels, and diastolic blood pressure (AUC 0.66, 95% CI 0.57-0.75). A single cutoff value of the genetic risk score had 90% sensitivity and 36% specificity for NASH. A risk score combining the clinical and genetic risk factors resulted in an AUC of 0.80 (95% CI 0.73-0.87). CONCLUSIONS: A score based on genetic risk factors significantly predicts NASH in obese children with increased liver enzymes, representing a proof-of-principle that genetic scores may be useful to predict long-term outcomes of the disease and guide clinical management.


Assuntos
Predisposição Genética para Doença/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo Genético/genética , Adolescente , Biópsia , Criança , Feminino , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Lipase/genética , Fígado/enzimologia , Fígado/patologia , Modelos Logísticos , Masculino , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Fosfatidato Fosfatase/genética , Proteínas Proto-Oncogênicas/genética , Curva ROC , Superóxido Dismutase/genética
13.
Cell Death Dis ; 15(9): 673, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39271656

RESUMO

Recent insights into the mechanisms controlling gene expression identified enhancer-associated long non-coding RNAs (elncRNAs) as master players of transcription in cancers. RUNX2, a mammalian RUNT-related transcription factor, is increasingly recognized in cancer biology for its role in supporting survival and progression also in thyroid cancer (TC). We recently identified, within the RUNX2 locus, a novel elncRNA that we named RAIN (RUNX2 associated intergenic lncRNA). We showed that RAIN and RUNX2 expression correlate in TC, both in vitro and in vivo, and that RAIN promotes RUNX2 expression by interacting with and affecting the activity of the RUNX2 P2 promoter through two distinct mechanisms. Here, we took forward these observations to explore the genome-wide transcriptional function of RAIN and its contribution to the RUNX2-dependent gene expression program in TC. By combining multiple omics data, we demonstrated that RAIN functionally cooperates with RUNX2 to the regulation of a subset of functionally related genes involved in promoting matrix remodeling, migration, and loss of differentiation. We showed that RAIN interacts with RUNX2 and its expression is required for the efficient recruitment of this TF to its target regulatory regions. In addition, our data revealed that besides RUNX2, RAIN governs a hierarchically organized complex transcriptional program by controlling a core of cancer-associated TFs that, in turn, orchestrate the expression of downstream genes. This evidence indicates that the functional cooperation observed between RAIN and RUNX2 can be a diffuse work mechanism for this elncRNA.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , RNA Longo não Codificante , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Regiões Promotoras Genéticas/genética
14.
Cancer Lett ; 592: 216950, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38729555

RESUMO

Malignant pleural mesothelioma is a rare and lethal cancer caused by exposure to asbestos. The highly inflammatory environment caused by fibers accumulation forces cells to undergo profound adaptation to gain survival advantages. Prioritizing the synthesis of essential transcripts is an efficient mechanism coordinated by multiple molecules, including long non-coding RNAs. Enhancing the knowledge about these mechanisms is an essential weapon in combating mesothelioma. Linc00941 correlates to bad prognosis in various cancers, but it is reported to partake in distinct and apparently irreconcilable processes. In this work, we report that linc00941 supports the survival and aggressiveness of mesothelioma cells by influencing protein synthesis and ribosome biogenesis. Linc00941 binds to the translation initiation factor eIF4G, promoting the selective protein synthesis of cMYC, which, in turn, enhances the expression of key genes involved in translation. We analyzed a retrospective cohort of 97 mesothelioma patients' samples from our institution, revealing that linc00941 expression strongly correlates with reduced survival probability. This discovery clarifies linc00941's role in mesothelioma and proposes a unified mechanism of action for this lncRNA involving the selective translation of essential oncogenes, reconciling the discrepancies about its function.


Assuntos
Fator de Iniciação Eucariótico 4G , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Mesotelioma Maligno/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Neoplasias Pleurais/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Estudos Retrospectivos , Prognóstico , Proliferação de Células
15.
Cancers (Basel) ; 16(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38927938

RESUMO

BACKGROUND: A subset of patients affected by cutaneous squamous cell carcinoma (cSCC) can exhibit locally invasive or metastatic tumors. Different staging classification systems are currently in use for cSCC. However, precise patient risk stratification has yet to be reached in clinical practice. The study aims to identify specific histological and molecular parameters characterizing metastatic cSCC. METHODS: Patients affected by metastatic and non-metastatic cSCC (controls) were included in the present study and matched for clinical and histological characteristics. Skin samples from primary tumors were revised for several histological parameters and also underwent gene expression profiling with a commercially available panel testing 770 different genes. RESULTS: In total, 48 subjects were enrolled in the study (24 cases, 24 controls); 67 genes were found to be differentially expressed between metastatic and non-metastatic cSCC. Most such genes were involved in immune regulation, skin integrity, angiogenesis, cell migration and proliferation. CONCLUSION: The combination of histological and molecular profiles of cSCCs allows the identification of features specific to metastatic cSCC, with potential implications for more precise patient risk stratification.

16.
Virchows Arch ; 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39499318

RESUMO

The advent of "omics" technologies for high-depth tumor profiling has provided new information regarding cancer heterogeneity. However, a bulk omics profile can only partially reproduce tumor complexity, and it does not meet the preferences of pathologists used to perform an in situ assessment of marker expression, for instance, with immunohistochemistry. The NanoString GeoMx® Digital Spatial Profiler (DSP) is a platform for morphology-guided multiplex profiling of tissue slides, which allows the digital quantification of target analytes in different neoplastic settings. To illustrate the feasibility and opportunities offered by DSP from a pathologist's perspective, we applied DSP in three different representative neoplastic settings: breast carcinoma, thyroid anaplastic carcinoma, and biphasic mesothelioma. Because of the perfect overlap between the hematoxylin-eosin-stained slide and the GeoMx areas of interest, in breast carcinoma, two different antibodies allowed the distinction of the tumor cells from the surrounding tumor microenvironment. In biphasic mesothelioma, we could distinguish the epithelioid from the sarcomatoid neoplastic component, and in the thyroid, we easily separated the anaplastic areas from the well-differentiated carcinoma. DSP is a promising tool that combines traditional histological evaluation, allowing spatial assessment of a tumor and its surroundings, and innovative in situ digital profiling. Pathologists should not miss the opportunity to combine morphological and genomic analyses and be at the forefront of investigating the progression of dysplasia/neoplasia, low-grade or high-grade, epithelial/mesenchymal, and, more in general, overcoming the concept of in situ vs. bulk genomic methods.

17.
Cancer Immunol Res ; 12(1): 120-134, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-37856875

RESUMO

Neoadjuvant chemotherapy (NAC) alone or combined with target therapies represents the standard of care for localized triple-negative breast cancer (TNBC). However, only a fraction of patients have a response, necessitating better understanding of the complex elements in the TNBC ecosystem that establish continuous and multidimensional interactions. Resolving such complexity requires new spatially-defined approaches. Here, we used spatial transcriptomics to investigate the multidimensional organization of TNBC at diagnosis and explore the contribution of each cell component to response to NAC. Starting from a consecutive retrospective series of TNBC cases, we designed a case-control study including 24 patients with TNBC of which 12 experienced a pathologic complete response (pCR) and 12 no-response or progression (pNR) after NAC. Over 200 regions of interest (ROI) were profiled. Our computational approaches described a model that recapitulates clinical response to therapy. The data were validated in an independent cohort of patients. Differences in the transcriptional program were detected in the tumor, stroma, and immune infiltrate comparing patients with a pCR with those with pNR. In pCR, spatial contamination between the tumor mass and the infiltrating lymphocytes was observed, sustained by a massive activation of IFN-signaling. Conversely, pNR lesions displayed increased pro-angiogenetic signaling and oxygen-based metabolism. Only modest differences were observed in the stroma, revealing a topology-based functional heterogeneity of the immune infiltrate. Thus, spatial transcriptomics provides fundamental information on the multidimensionality of TNBC and allows an effective prediction of tumor behavior. These results open new perspectives for the improvement and personalization of therapeutic approaches to TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Estudos de Casos e Controles , Terapia Neoadjuvante/métodos , Prognóstico , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Feminino
18.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518775

RESUMO

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Membrana Basal/metabolismo , Sistema Nervoso
19.
Mol Oncol ; 17(12): 2728-2742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37408506

RESUMO

Mortality from vmelanoma is associated with metastatic disease, but the mechanisms leading to spreading of the cancer cells remain obscure. Spatial profiling revealed that melanoma is characterized by a high degree of heterogeneity, which is established by the ability of melanoma cells to switch between different phenotypical stages. This plasticity, likely a heritage from embryonic pathways, accounts for a relevant part of the metastatic potential of these lesions, and requires the rapid and efficient reorganization of the transcriptional landscape of melanoma cells. A large part of the non-coding genome cooperates to control gene expression, specifically through the activity of enhancers (ENHs). In this study, we aimed to identify ex vivo the network of active ENHs and to outline their cooperative interactions in supporting transcriptional adaptation during melanoma metastatic progression. We conducted a genome-wide analysis to map active ENHs distribution in a retrospective cohort of 39 melanoma patients, comparing the profiles obtained in primary (N = 19) and metastatic (N = 20) melanoma lesions. Unsupervised clustering showed that the profile for acetylated histone H3 at lysine 27 (H3K27ac) efficiently segregates lesions into three different clusters corresponding to progressive stages of the disease. We reconstructed the map of super-ENHs (SEs) and cooperative ENHs that associate with metastatic progression in melanoma, which showed that cooperation among regulatory elements is a mandatory requirement for transcriptional plasticity. We also showed that these elements carry out specialized and non-redundant functions, and indicated the existence of a hierarchical organization, with SEs on top as masterminds of the entire transcriptional program and classical ENHs as executors. By providing an innovative vision of how the chromatin landscape of melanoma works during metastatic spreading, our data also point out the need to integrate functional profiling in the analysis of cancer lesions to increase definition and improve interpretation of tumor heterogeneity.


Assuntos
Melanoma , Humanos , Melanoma/genética , Melanoma/metabolismo , Estudos Retrospectivos , Histonas/metabolismo , Cromatina
20.
Cell Death Dis ; 14(2): 99, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765037

RESUMO

Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.


Assuntos
Adenocarcinoma , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Adenocarcinoma/genética , Diferenciação Celular/genética , Oncogenes/genética , Fator de Transcrição E2F7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA