Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 293, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504181

RESUMO

BACKGROUND: Alternative splicing (AS) is a principal mode of genetic regulation and one of the most widely used mechanisms to generate structurally and functionally distinct mRNA and protein variants. Dysregulation of AS may result in aberrant transcription and protein products, leading to the emergence of human diseases. Although considered important for regulating gene expression, genome-wide AS dysregulation, underlying mechanisms, and clinical relevance in knee osteoarthritis (OA) remain unelucidated. Therefore, in this study, we elucidated and validated AS events and their regulatory mechanisms during OA progression. RESULTS: In this study, we identified differentially expressed genes between human OA and healthy meniscus samples. Among them, the OA-associated genes were primarily enriched in biological pathways such as extracellular matrix organization and ossification. The predominant OA-associated regulated AS (RAS) events were found to be involved in apoptosis during OA development. The expression of the apoptosis-related gene BCL2L13, XAF1, and NF2 were significantly different between OA and healthy meniscus samples. The construction of a covariation network of RNA-binding proteins (RBPs) and RAS genes revealed that differentially expressed RBP genes LAMA2 and CUL4B may regulate the apoptotic genes XAF1 and BCL2L13 to undergo AS events during OA progression. Finally, RT-qPCR revealed that CUL4B expression was significantly higher in OA meniscus samples than in normal controls and that the AS ratio of XAF1 was significantly different between control and OA samples; these findings were consistent with their expected expression and regulatory relationships. CONCLUSIONS: Differentially expressed RBPs may regulate the AS of apoptotic genes during knee OA progression. XAF1 and its regulator, CUL4B, may serve as novel biomarkers and potential therapeutic targets for this disease.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Processamento Alternativo , RNA Mensageiro/genética , Biomarcadores/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
2.
Small ; 18(48): e2204553, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135974

RESUMO

Growth of semiconductor heterojunction nanoarrays directly on conductive substrates represents a promising strategy toward high-performance photoelectrodes for photoelectrochemical (PEC) water splitting. By controlling the growth conditions, heterojunction nanoarrays with different morphologies and semiconductor components can be fabricated, resulting in greatly enhanced light-absorption properties, stabilities, and PEC activities. Herein, recent progress in the development of self-supported heterostructured semiconductor nanoarrays as efficient photoanode catalysts for water oxidation is reviewed. Synthetic methods for the fabrication of heterojunction nanoarrays with specific compositions and structures are first discussed, including templating methods, wet chemical syntheses, electrochemical approaches and chemical vapor deposition (CVD) methods. Then, various heterojunction nanoarrays that have been reported in recent years based on particular core semiconductor scaffolds (e.g., TiO2 , ZnO, WO3 , Fe2 O3 , etc.) are summarized, placing strong emphasis on the synergies generated at the interface between the semiconductor components that can favorably boost PEC water oxidation. Whilst strong progress has been made in recent years to enhance the visible-light responsiveness, photon-to-O2 conversion efficiency and stability of photoanodes based on heterojunction nanoarrays, further advancements in all these areas are needed for PEC water splitting to gain any traction alongside photovoltaic-electrochemical (PV-EC) systems as a viable and cost-effective route toward the hydrogen economy.


Assuntos
Semicondutores , Água , Gases , Hidrogênio , Condutividade Elétrica
3.
ACS Omega ; 5(30): 18919-18934, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775893

RESUMO

This study systematically evaluates the performance of a series of TiO2 nanoflower (TNF) photocatalysts for aqueous methylene blue photo-oxidation under UV irradiation. TNF nanoflowers were synthesized from Ti(IV) butoxide by a hydrothermal method and then calcined at different temperatures (T = 400-800 °C) for specific periods of time (t = 1-5 h). By varying the calcination conditions, TNF-T-t photocatalysts with diverse physicochemical properties and anatase/rutile ratios were obtained. Many of the TNF-T-1 photocatalysts demonstrated remarkable activity for aqueous methylene blue photo-oxidation at pH 6 under UV excitation (365 nm), with activities following the order TNF-700-1 > TNF-600-1 > TNF-500-1 > TNF-400-1 ∼ P25 TiO2 ≫ TNF-800-1. The activity of the TNF-700-1 photocatalyst (99% anatase, 1% rutile) was 2.3 times that of P25 TiO2 at pH 6 and 14.4 times that of P25 TiO2 at pH 4. Prolonged calcination of the TNFs at 700 °C proved detrimental to dye degradation performance due to excessive rutile formation, which reduced the photocatalyst surface area and suppressed OH• generation. The outstanding activities of TNF-700-1 and TNF-600-1 are attributed to their hierarchical nanoflower morphology which benefitted UV absorption, a near-ideal anatase crystallite size for efficient charge separation, and their unusually low isoelectric point (IEP = 4.3-4.5).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA