Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 128(5): 589-603, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34091667

RESUMO

BACKGROUND AND AIMS: Wheat crops are exposed to a range of mechanical stimulations in their natural environment, yet we know very little about their response to such conditions. The aim of this study was to better understand the effect of mechanical stimulation on wheat growth and development, stem mechanical properties and grain measures. We focused on the following questions: (1) Does plant age affect the response to mechanical stimulation? (2) Is there a minimum threshold for the perception of mechanical stimuli? (3) Is the effect of manual brushing different to natural wind stimulation? METHODS: For age- and dose-response experiments, wheat plants were grown under controlled glasshouse conditions with brushing treatments applied using a purpose-built rig. The results of the controlled experiments are compared with those from an outside experiment where wheat plants were exposed to natural wind, with or without additional brushing. Detailed phenotypic measurements were conducted and treatment effects on grain characteristics were determined using micro-computed tomography imaging. KEY RESULTS: Two-week-old wheat plants were particularly sensitive to mechanical stimulation by controlled brushing treatments. Amongst others, plants exhibited a large reduction in height and grain yield, and an increase in tillers, above-ground biomass and stiffness of stem segments. Plants responded significantly to doses as small as one daily brushstroke. Outdoor experiments by and large confirmed results from controlled environment experiments. CONCLUSIONS: The morphological and developmental response to mechanical brushing treatment, in relation to vegetative above-ground biomass and grain yield, is dependent on plant age as well as the dose of the treatments. This study shows that mechanical stimulation of wheat impacts on a multitude of agriculturally relevant traits and provides a much needed advancement of our understanding of wheat thigmomorphogenesis and the potential applications of mechanical conditioning to control relevant traits.


Assuntos
Grão Comestível , Triticum , Biomassa , Fenótipo , Microtomografia por Raio-X
2.
Ann Bot ; 124(4): 521-530, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30351424

RESUMO

BACKGROUND: Miscanthus has potential as a biomass crop but the development of varieties that are consistently superior to the natural hybrid M. × giganteus has been challenging, presumably because of strong G × E interactions and poor knowledge of the complex genetic architectures of traits underlying biomass productivity and climatic adaptation. While linkage and association mapping studies are starting to generate long lists of candidate regions and even individual genes, it seems unlikely that this information can be translated into effective marker-assisted selection for the needs of breeding programmes. Genomic selection has emerged as a viable alternative, and prediction accuracies are moderate across a range of phenological and morphometric traits in Miscanthus, though relatively low for biomass yield per se. METHODS: We have previously proposed a combination of index selection and genomic prediction as a way of overcoming the limitations imposed by the inherent complexity of biomass yield. Here we extend this approach and illustrate its potential to achieve multiple breeding targets simultaneously, in the absence of a priori knowledge about their relative economic importance, while also monitoring correlated selection responses for non-target traits. We evaluate two hypothetical scenarios of increasing biomass yield by 20 % within a single round of selection. In the first scenario, this is achieved in combination with delaying flowering by 44 d (roughly 20 %), whereas, in the second, increased yield is targeted jointly with reduced lignin (-5 %) and increased cellulose (+5 %) content, relative to current average levels in the breeding population. KEY RESULTS: In both scenarios, the objectives were achieved efficiently (selection intensities corresponding to keeping the best 20 and 4 % of genotypes, respectively). However, the outcomes were strikingly different in terms of correlated responses, and the relative economic values (i.e. value per unit of change in each trait compared with that for biomass yield) of secondary traits included in selection indices varied considerably. CONCLUSIONS: Although these calculations rely on multiple assumptions, they highlight the need to evaluate breeding objectives and explicitly consider correlated responses in silico, prior to committing extensive resources. The proposed approach is broadly applicable for this purpose and can readily incorporate high-throughput phenotyping data as part of integrated breeding platforms.


Assuntos
Cruzamento , Genômica , Genótipo , Fenótipo , Poaceae , Seleção Genética
3.
Ann Bot ; 124(4): 591-604, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30596965

RESUMO

BACKGROUND AND AIMS: Germplasm with diverse, agronomically relevant traits forms the foundation of a successful plant breeding programme. Since 1993, the United Nations has been advocating the implementation of the Convention on Biological Diversity (CBD) and the subsequent 2002 Bonn Guidelines as international best practice on germplasm collection and use. In 2006, a European team made an expedition to Asia to collect wild germplasm of Miscanthus, a C4 perennial rhizomatous grass, for breeding an environmentally adaptable, resilient and high-yielding bioenergy crop. We outline general aspects of germplasm collection, conservation, breeding and biomass production evaluation while following the CBD's guidelines, respecting biodiversity and conservation needs, and the ethical use of genetic resources. METHODS: Effective protocols, quarantine, methods for collecting seed and rhizomes, and a genebank for conservation were established. Versatile informatics and database architecture were used to assist in selection, flowering synchronization, crossing, evaluation, phenotyping and data integration. Approaches were formulated to comply with the CBD guidelines. KEY RESULTS: A total of 303 accessions of M. sinensis, M. sacchariflorus and M. floridulus were collected from 158 geographically and environmentally diverse locations. These species were shown to accumulate different amounts of aerial biomass due to combinations of stem count, height and thickness. Progeny from one interspecies cross accumulated more biomass in early trials and has shown double the yield performance in years 3-4 compared with the existing commercial cultivar M. × giganteus. An example of an F1 hybrid has already demonstrated the long-term potential of exploiting this collection for a breeding programme. CONCLUSIONS: By conforming to the CBD principles, the authors' international collaboration provides a practical example of implementing the CBD. The collection widened the genetic diversity of Miscanthus available to allow for breeding of novel hybrids that exhibit more diverse traits to increase yield and resilience for growth on marginal land and in climate-challenged environments.


Assuntos
Biodiversidade , Poaceae , Ásia , Europa (Continente) , Nações Unidas
4.
J Exp Bot ; 68(18): 5093-5102, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29040628

RESUMO

Miscanthus has potential as a bioenergy crop but the rapid development of high-yielding varieties is challenging. Previous studies have suggested that phenology and canopy height are important determinants of biomass yield. Furthermore, while genome-wide prediction was effective for a broad range of traits, the predictive ability for yield was very low. We therefore developed models clarifying the genetic associations between spring emergence, consequent canopy phenology and dry biomass yield. The timing of emergence was a moderately strong predictor of early-season elongation growth (genetic correlation >0.5), but less so for growth later in the season and for the final yield (genetic correlation <0.1). In contrast, early-season canopy height was consistently more informative than emergence for predicting biomass yield across datasets for two species in Miscanthus and two growing seasons. We used the associations uncovered through these models to develop selection indices that are expected to increase the response to selection for yield by as much as 21% and improve the performance of genome-wide prediction by an order of magnitude. This multivariate approach could have an immediate impact in operational breeding programmes, as well as enable the integration of crop growth models and genome-wide prediction.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Estatísticos , Poaceae/genética , Agricultura , Biocombustíveis , Biomassa , Cruzamento , Genótipo , Fenótipo , Poaceae/crescimento & desenvolvimento , Estações do Ano
5.
New Phytol ; 201(4): 1227-1239, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308815

RESUMO

• Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. • We generated over 100,000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. • Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10,000-20,000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. • Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible.


Assuntos
Biomassa , Parede Celular/metabolismo , Estudo de Associação Genômica Ampla , Poaceae/citologia , Poaceae/genética , Característica Quantitativa Herdável , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta/genética , Genótipo , Geografia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Análise de Componente Principal , Mapeamento por Restrição , Análise de Sequência de DNA
6.
J Exp Bot ; 64(2): 541-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23183254

RESUMO

Miscanthus sacchariflorus is a fast-growing C(4) perennial grass that can naturally hybridize with M. sinensis to produce interspecific hybrids, such as the sterile triploid M.× giganteus. The creation of such hybrids is essential for the rapid domestication of this novel bioenergy crop. However, progress has been hindered by poor understanding of the environmental cues promoting floral transition in M. sacchariflorus, which flowers less readily than M. sinensis. The purpose of this work was to identify the flowering requirements of M. sacchariflorus genotypes in order to expedite the introduction of new germplasm optimized to different environments. Six M. sacchariflorus accessions collected from a range of latitudes were grown under controlled photoperiod and temperature conditions, and flowering, biomass, and morphological phenotypic data were captured. Results indicated that M. sacchariflorus, irrespective of origin, is a quantitative short-day plant. Flowering under static long days (15.3h daylength), compared with shorter photoperiods, was delayed by an average 61 d, with an average associated increase of 52% of above-ground biomass (DM plant(-1)). Timing of floral initiation occurred between photoperiods of 14.2h and 12.1h, and accumulated temperatures of 553-1157 °C above a base temperature of 10 °C. Miscanthus sacchariflorus flowering phenology closely resembles that of Sorghum and Saccharum, indicating potentially similar floral pathways and suggesting that determination of the underlying genetic mechanisms will be facilitated by the syntenic relationships existing between these important C(4) grasses.


Assuntos
Flores/crescimento & desenvolvimento , Poaceae/genética , Biocombustíveis , Biomassa , Flores/genética , Flores/efeitos da radiação , Luz , Fotoperíodo , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação , Temperatura
7.
J Exp Bot ; 64(8): 2373-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599277

RESUMO

Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed.


Assuntos
Biocombustíveis , Poaceae/crescimento & desenvolvimento , Agricultura , Biomassa , Genótipo , Fenótipo , Poaceae/genética , Análise de Componente Principal , Característica Quantitativa Herdável , Fatores de Tempo
8.
J Exp Bot ; 64(14): 4143-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24064927

RESUMO

To accelerate domestication of Miscanthus, an important energy crop, 244 replicated genotypes, including two different species and their hybrids, were analysed for morphological traits and biomass yield over three growing seasons following an establishment phase of 2 years in the largest Miscanthus diversity trial described to date. Stem and leaf traits were selected that contributed both directly and indirectly to total harvested biomass yield, and there was variation in all traits measured. Morphological diversity within the population was correlated with dry matter yield (DMY) both as individual traits and in combination, in order to determine the respective contributions of the traits to biomass accumulation and to identify breeding targets for yield improvement. Predictive morphometric analysis was possible at year 3 within Miscanthus sinensis genotypes but not between M. sinensis, Miscanthus sacchariflorus, and interspecific hybrids. Yield is a complex trait, and no single simple trait explained more than 33% of DMY, which varied from 1 to 5297 g among genotypes within this trial. Associating simple traits increased the power of the morphological data to predict yield to 60%. Trait variety, in combination, enabled multiple ideotypes, thereby increasing the potential diversity of the crop for multiple growth locations and end uses. Both triploids and interspecific hybrids produced the highest mature yields, indicating that there is significant heterosis to be exploited within Miscanthus that might be overlooked in early selection screens within years 1-3. The potential for optimizing biomass yield by selecting on the basis of morphology is discussed.


Assuntos
Biocombustíveis , Conservação dos Recursos Naturais , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Biodiversidade , Biomassa , Produtos Agrícolas/genética , Genótipo , Modelos Lineares , Folhas de Planta/anatomia & histologia , Ploidias , Característica Quantitativa Herdável , Especificidade da Espécie
9.
Ann Bot ; 111(5): 999-1013, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23519835

RESUMO

BACKGROUND AND AIMS: The bioenergy grass Miscanthus is native to eastern Asia. As Miscanthus uses C4 photosynthesis, the cooler temperatures experienced in much of northern Europe are expected to limit productivity. Identification of genetic diversity in chilling tolerance will enable breeders to generate more productive varieties for these cooler regions. Characterizing the temporal relationships between photosynthesis, carbohydrate and molecular expression of relevant genes is key to understanding genotypic differences in tolerance or sensitivity. METHODS: To characterize chilling responses in four Miscanthus genotypes, plants were exposed to a sudden reduction in temperature. The genotypes studied comprised of two M. sinensis, one M. sacchariflorus and one inter-species hybrid, M. × giganteus. Changes in photosynthesis (Asat), carbohydrate composition and the expression of target transcripts were observed following chilling-shock. After 4 d the decline in leaf elongation rate (LER) in the different genotypes was measured. RESULTS: Following chilling-shock the greatest decline in Asat was observed in M. sacchariflorus and one M. sinensis genotype. Carbohydrate concentrations increased in all genotypes following chilling but to a lesser extent in M. sacchariflorus. Two stress inducible genes were most highly expressed in the genotypes that experienced the greatest declines in Asat and LER. Miscanthus × giganteus retained the highest Asat and was unique in exhibiting no decline in LER following transfer to 12 °C. CONCLUSIONS: Miscanthus × giganteus exhibits a superior tolerance to chilling shock than other genotypes of Miscanthus. The absence of sucrose accumulation in M. sacchariflorus during chilling-shock suggests an impairment in enzyme function. A candidate transcription factor, MsCBF3, is most highly expressed in the most sensitive genotypes and may be a suitable molecular marker for predicting chilling sensitivity.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Cruzamentos Genéticos , Poaceae/genética , Poaceae/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos da radiação , Metabolismo dos Carboidratos/efeitos da radiação , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genótipo , Luz , Fenótipo , Fotossíntese/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Poaceae/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Amido/metabolismo
10.
Glob Change Biol Bioenergy ; 15(4): 444-461, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38505760

RESUMO

New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020-2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020-2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7-89.7 Mt year-1 biomass, with potential for 1.2-1.3 EJ year-1 energy and 36.3-40.3 Mt year-1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.

11.
Glob Change Biol Bioenergy ; 15(5): 538-558, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38505831

RESUMO

Demand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023-27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio-economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low-carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long-term, strategic R&D and education for positive environmental, economic and social sustainability impacts.

12.
Glob Change Biol Bioenergy ; 14(11): 1205-1218, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36632359

RESUMO

To achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio-energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost-effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land-based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.

13.
J Exp Bot ; 62(10): 3545-61, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21402660

RESUMO

Despite the economic importance of grasses as food, feed, and energy crops, little is known about the genes that control their cell wall synthesis, assembly, and remodelling. Here a detailed transcriptome analysis that allowed the identification of genes involved in grass cell wall biogenesis is provided. Differential gene expression profiling, using maize oligonucleotide arrays, was used to identify genes differentially expressed between an elongating internode, containing cells exhibiting primary cell wall synthesis, and an internode that had just ceased elongation and in which many cells were depositing secondary cell wall material. This is one of only a few studies specifically aimed at the identification of cell wall-related genes in grasses. Analysis identified new candidate genes for a role in primary and secondary cell wall biogenesis in grasses. The results suggest that many proteins involved in cell wall processes during normal development are also recruited during defence-related cell wall remodelling events. This work provides a platform for studies in which candidate genes will be functionally tested for involvement in cell wall-related processes, increasing our knowledge of cell wall biogenesis and its regulation in grasses. Since several grasses are currently being developed as lignocellulosic feedstocks for biofuel production, this improved understanding of grass cell wall biogenesis is timely, as it will facilitate the manipulation of traits favourable for sustainable food and biofuel production.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Biocombustíveis , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Lignina/genética , Lignina/metabolismo , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zea mays/genética
14.
Front Plant Sci ; 12: 603411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679825

RESUMO

The challenges of feeding an increasing population, an increasingly urban population and within an increasingly challenging global environment have focused ideas on new ways to grow food. Growing food in a controlled environment (CE) is not new but new technologies such as broad-spectrum LEDs and robotics are generating new opportunities. Growth recipes can be tailored to plant species in a CE and plasticity in plant responses to the environment may be utilized to make growth systems more efficient for improved yield and crop quality. Light use efficiency within CE must consider energy requirements, yield and impacts on quality. We hypothesized that understanding how plants change their morphology and physiology in response to light will allow us to identify routes to make light more efficient for delivery of high-quality produce. We focused on responses to light in Lollo rosso lettuce which produces compact, crinkly and highly pigmented leaves. We compared the spectra of the commonly used artificial light sources in indoor farming (compact fluorescence tubes, FL, and broad-spectrum light-emitting diodes, LEDs) at two irradiance levels (270 and 570 µmol m-2 s-1). We discovered LEDs (λP: 451, 634, and 665 nm) produced the same amount of produce for half the incident energy of FL (T5). At higher irradiances LEDs produced 9% thicker leaves, 13% larger rosettes and 15% greater carotenoid content. Leaves differed in light absorptance with plants grown under lower FL absorbing 30% less of mid-range wavelengths. We show that the relative efficiencies of LED and FL is a function of the irradiances compared and demonstrate the importance of understanding the asymptotes of yield and quality traits. Increasing our understanding of structural and biochemical changes that occur under different combination of wavelengths may allow us to better optimize light delivery, select for different ranges of plasticity in crop plants and further optimize light recipes.

15.
F1000Res ; 10: 29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732433

RESUMO

Miscanthus sacchariflorus (Maxim.) Hack. is a highly productive C4 perennial rhizomatous biofuel grass crop. M. sacchariflorus is among the most widely distributed species in the genus, particularly at cold northern latitudes, and is one of the progenitor species of the commercial M. × giganteus genotypes. We generated a 2.54 Gb whole-genome assembly of the diploid M. sacchariflorus cv. "Robustus 297" genotype, which represented ~59% of the expected total genome size. We later anchored this assembly using the chromosomes from the M. sinensis genome to generate a second assembly with improved contiguity. We annotated 86,767 and 69,049 protein-coding genes in the unanchored and anchored assemblies, respectively. We estimated our assemblies included ~85% of the M. sacchariflorus genes based on homology and core markers. The utility of the new reference for genomic studies was evidenced by a 99% alignment rate of the RNA-seq reads from the same genotype.  The raw data, unanchored and anchored assemblies, and respective gene annotations are publicly available.


Assuntos
Biocombustíveis , Poaceae , Genótipo , Poaceae/genética
16.
Glob Change Biol Bioenergy ; 13(1): 98-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33381230

RESUMO

Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.

17.
Front Plant Sci ; 11: 598082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391308

RESUMO

Pigmented food are an important part of the human diet, and anthocyanins have demonstrable protection against tumor production in mouse models and beneficial effects on human liver chemistry. As such, producing pigmented crops is important for a nutritionally diverse diet. Lollo rosso lettuce is a fast-growing pigmented plant, is rich in phenolic compounds, and represents a suitable system to test optimization strategies for yield and anthocyanin production. High-energy UV wavebands are often used to stimulate increased pigmentation; however, we hypothesized that optimizing visible wavebands would deliver both yield and quality improvements. Growing Lollo rosso under irradiances between 5 and 180 W m-2 using visible waveband LEDs produced 0.4 g fresh weight per W m-2 in the linear portion of the curve between 5 and 40 W m-2 and achieved an approximate asymptote of 20 g fresh weight at around 100-120 W m-2 for yield. Anthocyanin content increased linearly with irradiance. We attempted to optimize the visible wavebands by supplementing half the asymptotic energy for 15 days with supplemental red (R) or blue (B) wavebands in the peaks of photosynthetic activity (430-460 and 630-660 nm). R and B affected rosette morphology with no significant impact on yield, but B significantly increased anthocyanin content by 94% compared to R. We therefore focused on further optimizing B by shortening the daily duration of supplemental B. The minimum B treatment that lacked significant pigment induction was 1 h. We hypothesized that short durations would be more active at different times in the diurnal cycle. Supplemental B was applied for 2 h at four different times. A night-break with B produced the highest yield and anthocyanin content. Our research demonstrates new ways to efficiently use readily available LEDs within the PAR wavebands to increase both yield and crop quality in controlled environment agriculture.

18.
Nat Commun ; 11(1): 5442, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116128

RESUMO

Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.


Assuntos
Poaceae/genética , Biomassa , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Genômica , Modelos Genéticos , Filogenia , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Poliploidia , Saccharum/genética , Estações do Ano , Sorghum/genética
19.
BMC Plant Biol ; 9: 94, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19619287

RESUMO

BACKGROUND: Polyphenol oxidase (PPO) activity in plants is a trait with potential economic, agricultural and environmental impact. In relation to the food industry, PPO-induced browning causes unacceptable discolouration in fruit and vegetables: from an agriculture perspective, PPO can protect plants against pathogens and environmental stress, improve ruminant growth by increasing nitrogen absorption and decreasing nitrogen loss to the environment through the animal's urine. The high PPO legume, red clover, has a significant economic and environmental role in sustaining low-input organic and conventional farms. Molecular markers for a range of important agricultural traits are being developed for red clover and improved knowledge of PPO genes and their structure will facilitate molecular breeding. RESULTS: A bacterial artificial chromosome (BAC) library comprising 26,016 BAC clones with an average 135 Kb insert size, was constructed from Trifolium pratense L. (red clover), a diploid legume with a haploid genome size of 440-637 Mb. Library coverage of 6-8 genome equivalents ensured good representation of genes: the library was screened for polyphenol oxidase (PPO) genes.Two single copy PPO genes, PPO4 and PPO5, were identified to add to a family of three, previously reported, paralogous genes (PPO1-PPO3). Multiple PPO1 copies were identified and characterised revealing a subfamily comprising three variants PPO1/2, PPO1/4 and PPO1/5. Six PPO genes clustered within the genome: four separate BAC clones could be assembled onto a predicted 190-510 Kb single BAC contig. CONCLUSION: A PPO gene family in red clover resides as a cluster of at least 6 genes. Three of these genes have high homology, suggesting a more recent evolutionary event. This PPO cluster covers a longer region of the genome than clusters detected in rice or previously reported in tomato. Full-length coding sequences from PPO4, PPO5, PPO1/5 and PPO1/4 will facilitate functional studies and provide genetic markers for plant breeding.


Assuntos
Catecol Oxidase/genética , Genoma de Planta , Família Multigênica , Trifolium/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Dosagem de Genes , Biblioteca Gênica , Dados de Sequência Molecular , Análise de Sequência de DNA , Trifolium/enzimologia
20.
Glob Change Biol Bioenergy ; 11(11): 1298-1317, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762786

RESUMO

When considering the large-scale deployment of bioenergy crops, it is important to understand the implication for ecosystem hydrological processes and the influences of crop type and location. Based on the potential for future land use change (LUC), the 10,280 km2 West Wales Water Framework Directive River Basin District (UK) was selected as a typical grassland dominated district, and the Soil & Water Assessment Tool (SWAT) hydrology model with a geographic information systems interface was used to investigate implications for different bioenergy deployment scenarios. The study area was delineated into 855 sub-basins and 7,108 hydrological response units based on rivers, soil type, land use, and slope. Changes in hydrological components for two bioenergy crops (Miscanthus and short rotation coppice, SRC) planted on 50% (2,192 km2) or 25% (1,096 km2) of existing improved pasture are quantified. Across the study area as a whole, only surface run-off with SRC planted at the 50% level was significantly impacted, where it was reduced by up to 23% (during April). However, results varied spatially and a comparison of annual means for each sub-basin and scenario revealed surface run-off was significantly decreased and baseflow significantly increased (by a maximum of 40%) with both Miscanthus and SRC. Evapotranspiration was significantly increased with SRC (at both planting levels) and water yield was significantly reduced with SRC (at the 50% level) by up to 5%. Effects on streamflow were limited, varying between -5% and +5% change (compared to baseline) in the majority of sub-basins. The results suggest that for mesic temperate grasslands, adverse effects from the drying of soil and alterations to streamflow may not arise, and with surface run-off reduced and baseflow increased, there could, depending on crop location, be potential benefits for flood and erosion mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA