Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(45): 15342-15365, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32868295

RESUMO

The contraction and relaxation of the heart is controlled by stimulation of the ß1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of ß1-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Oxidantes/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais , Acetatos/farmacologia , Animais , Bovinos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diamida/farmacologia , Humanos , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Compostos Nitrosos/farmacologia , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Coelhos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
2.
J Neurochem ; 153(1): 103-119, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925956

RESUMO

Increasing evidence suggests that the process of alpha-synuclein (α-syn) aggregation from monomers into amyloid fibrils and Lewy bodies, via oligomeric intermediates plays an essential role in the pathogenesis of different synucleinopathies, including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies (DLB). However, the nature of the toxic species and the mechanisms by which they contribute to neurotoxicity and disease progression remain elusive. Over the past two decades, significant efforts and resources have been invested in studies aimed at identifying and targeting toxic species along the pathway of α-syn fibrillization. Although this approach has helped to advance the field and provide insights into the biological properties and toxicity of different α-syn species, many of the fundamental questions regarding the role of α-syn aggregation in PD remain unanswered, and no therapeutic compounds targeting α-syn aggregates have passed clinical trials. Several factors have contributed to this slow progress, including the complexity of the aggregation pathways and the heterogeneity and dynamic nature of α-syn aggregates. In the majority of experiment, the α-syn samples used contain mixtures of α-syn species that exist in equilibrium and their ratio changes upon modifying experimental conditions. The failure to quantitatively account for the distribution of different α-syn species in different studies has contributed not only to experimental irreproducibility but also to misinterpretation of results and misdirection of valuable resources. Towards addressing these challenges and improving experimental reproducibility in Parkinson's research, we describe here a simple centrifugation-based filtration protocol for the isolation, quantification and assessment of the distribution of α-syn monomers, oligomers and fibrils, in heterogeneous α-syn samples of increasing complexity. The protocol is simple, does not require any special instrumentation and can be performed rapidly on multiple samples using small volumes. Here, we present and discuss several examples that illustrate the applications of this protocol and how it could contribute to improving the reproducibility of experiments aimed at elucidating the structural basis of α-syn aggregation, seeding activity, toxicity and pathology spreading. This protocol is applicable, with slight modifications, to other amyloid-forming proteins.


Assuntos
Centrifugação/métodos , Filtração/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/isolamento & purificação , Amiloide/química , Pesquisa Biomédica/métodos , Liofilização , Humanos , Corpos de Lewy/química , Doença de Parkinson , Agregação Patológica de Proteínas , Reprodutibilidade dos Testes , alfa-Sinucleína/química
3.
FASEB J ; 30(5): 1849-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839380

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) regulates actin-myosin interaction and thereby cardiac myocyte contraction and relaxation. This physiologic function is regulated by cMyBP-C phosphorylation. In our study, reduced site-specific cMyBP-C phosphorylation coincided with increased S-glutathiolation in ventricular tissue from patients with dilated or ischemic cardiomyopathy compared to nonfailing donors. We used redox proteomics, to identify constitutive and disease-specific S-glutathiolation sites in cMyBP-C in donor and patient samples, respectively. Among those, a cysteine cluster in the vicinity of the regulatory phosphorylation sites within the myosin S2 interaction domain C1-M-C2 was identified and showed enhanced S-glutathiolation in patients. In vitro S-glutathiolation of recombinant cMyBP-C C1-M-C2 occurred predominantly at Cys(249), which attenuated phosphorylation by protein kinases. Exposure to glutathione disulfide induced cMyBP-C S-glutathiolation, which functionally decelerated the kinetics of Ca(2+)-activated force development in ventricular myocytes from wild-type, but not those from Mybpc3-targeted knockout mice. These oxidation events abrogate protein kinase-mediated phosphorylation of cMyBP-C and therefore potentially contribute to the reduction of its phosphorylation and the contractile dysfunction observed in human heart failure.-Stathopoulou, K., Wittig, I., Heidler, J., Piasecki, A., Richter, F., Diering, S., van der Velden, J., Buck, F., Donzelli, S., Schröder, E., Wijnker, P. J. M., Voigt, N., Dobrev, D., Sadayappan, S., Eschenhagen, T., Carrier, L., Eaton, P., Cuello, F. S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Glutationa/metabolismo , Insuficiência Cardíaca/metabolismo , Adulto , Animais , Fármacos Cardiovasculares/uso terapêutico , Proteínas de Transporte/genética , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Oxirredução , Fosforilação , Adulto Jovem
4.
J Pharmacol Exp Ther ; 344(2): 339-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23211362

RESUMO

Nitroxyl (HNO) donors have potential benefit in the treatment of heart failure and other cardiovascular diseases. 1-Nitrosocyclohexyl acetate (NCA), a new HNO donor, in contrast to the classic HNO donors Angeli's salt and isopropylamine NONOate, predominantly releases HNO and has a longer half-life. This study investigated the vasodilatative properties of NCA in isolated aortic rings and human platelets and its mechanism of action. NCA was applied on aortic rings isolated from wild-type mice and apolipoprotein E-deficient mice and in endothelial-denuded aortae. The mechanism of action of HNO was examined by applying NCA in the absence and presence of the HNO scavenger glutathione (GSH) and inhibitors of soluble guanylyl cyclase (sGC), adenylyl cyclase (AC), calcitonin gene-related peptide receptor (CGRP), and K(+) channels. NCA induced a concentration-dependent relaxation (EC(50), 4.4 µM). This response did not differ between all groups, indicating an endothelium-independent relaxation effect. The concentration-response was markedly decreased in the presence of excess GSH; the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide had no effect. Inhibitors of sGC, CGRP, and voltage-dependent K(+) channels each significantly impaired the vasodilator response to NCA. In contrast, inhibitors of AC, ATP-sensitive K(+) channels, or high-conductance Ca(2+)-activated K(+) channels did not change the effects of NCA. NCA significantly reduced contractile response and platelet aggregation mediated by the thromboxane A(2) mimetic 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F(2)(α) in a cGMP-dependent manner. In summary, NCA shows vasoprotective effects and may have a promising profile as a therapeutic agent in vascular dysfunction, warranting further evaluation.


Assuntos
Acetatos/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxidos de Nitrogênio/metabolismo , Compostos Nitrosos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Acetatos/farmacocinética , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Aterosclerose/prevenção & controle , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Meia-Vida , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Doadores de Óxido Nítrico/farmacocinética , Compostos Nitrosos/farmacocinética , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacocinética , Vasodilatadores/farmacocinética
5.
Nitric Oxide ; 35: 131-6, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24126017

RESUMO

We introduce a strategy for generating mixtures of nitric oxide (NO) and nitroxyl (HNO) at tunable rates in physiological media. The approach involves converting a spontaneously HNO/NO-generating ion to a caged (prodrug) form that is essentially stable in neutral media, but that can be activated for HNO/NO release by adding an enzyme capable of efficiently opening the cage to regenerate the ion. By judiciously choosing the enzyme, substrate, and reaction conditions, unwanted scavenging of the HNO and NO by the protein can be minimised and the catalytic efficiency of the enzyme can be maintained. We illustrate this approach with a proof-of-concept study wherein the prodrug is Gal-IPA/NO, a diazeniumdiolate of structure iPrHN-N(O)NOR, with R=ß-d-galactosyl. Escherichia coli-derived ß-d-galactosidase at concentrations of 1.9-15nM hydrolysed 56µM substrate with half-lives of 140-19min, respectively, producing the IPA/NO anion (iPrHN-N(O)NO(-), half-life ∼3min), which in turn spontaneously hydrolysed to mixtures of HNO with NO. Using saturating substrate concentrations furnished IPA/NO generation rates that were directly proportional to enzyme concentration. Consistent with these data, the enzyme/substrate combination applied to ventricular myocytes isolated from wild-type mouse hearts resulted not only in a significant positive inotropic effect, but also rescued the cells from the negative inotropy, hypercontractions, and occasional cell death seen with the enzyme alone. This mechanism represents an alternate approach for achieving controlled fluxes of NO/HNO to investigate their biological actions.


Assuntos
Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , beta-Galactosidase/metabolismo , Animais , Ânions , Compostos Azo/metabolismo , Hidrólise , Camundongos , Células Musculares/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo
6.
Sci Adv ; 8(17): eabn0044, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486726

RESUMO

The alpha-synuclein mutation E83Q, the first in the NAC domain of the protein, was recently identified in a patient with dementia with Lewy bodies. We investigated the effects of this mutation on the aggregation of aSyn monomers and the structure, morphology, dynamic, and seeding activity of the aSyn fibrils in neurons. We found that it markedly accelerates aSyn fibrillization and results in the formation of fibrils with distinct structural and dynamic properties. In cells, this mutation is associated with higher levels of aSyn, accumulation of pS129, and increased toxicity. In a neuronal seeding model of Lewy body (LB) formation, the E83Q mutation significantly enhances the internalization of fibrils into neurons, induces higher seeding activity, and results in the formation of diverse aSyn pathologies, including the formation of LB-like inclusions that recapitulate the immunohistochemical and morphological features of brainstem LBs observed in brains of patients with Parkinson's disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Corpos de Lewy/química , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Mutação , Doença de Parkinson/metabolismo , Virulência , alfa-Sinucleína/genética
7.
NPJ Parkinsons Dis ; 8(1): 136, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266318

RESUMO

Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.

8.
Biochim Biophys Acta ; 1787(7): 835-40, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19426703

RESUMO

Once a virtually unknown nitrogen oxide, nitroxyl (HNO) has emerged as a potential pharmacological agent. Recent advances in the understanding of the chemistry of HNO has led to the an understanding of HNO biochemistry which is vastly different from the known chemistry and biochemistry of nitric oxide (NO), the one-electron oxidation product of HNO. The cardiovascular roles of NO have been extensively studied, as NO is a key modulator of vascular tone and is involved in a number of vascular related pathologies. HNO displays unique cardiovascular properties and has been shown to have positive lusitropic and ionotropic effects in failing hearts without a chronotropic effect. Additionally, HNO causes a release of CGRP and modulates calcium channels such as ryanodine receptors. HNO has shown beneficial effects in ischemia reperfusion injury, as HNO treatment before ischemia-reperfusion reduces infarct size. In addition to the cardiovascular effects observed, HNO has shown initial promise in the realm of cancer therapy. HNO has been demonstrated to inhibit GAPDH, a key glycolytic enzyme. Due to the Warburg effect, inhibiting glycolysis is an attractive target for inhibiting tumor proliferation. Indeed, HNO has recently been shown to inhibit tumor proliferation in mouse xenografts. Additionally, HNO inhibits tumor angiogenesis and induces cancer cell apoptosis. The effects seen with HNO donors are quite different from NO donors and in some cases are opposite. The chemical nature of HNO explains how HNO and NO, although closely chemically related, act so differently in biochemical systems. This also gives insight into the potential molecular motifs that may be reactive towards HNO and opens up a novel field of pharmacological development.


Assuntos
Óxidos de Nitrogênio/farmacologia , Animais , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/uso terapêutico
9.
J Am Chem Soc ; 132(46): 16526-32, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21033665

RESUMO

Here we describe a novel caged form of the highly reactive bioeffector molecule, nitroxyl (HNO). Reacting the labile nitric oxide (NO)- and HNO-generating salt of structure iPrHN-N(O)═NO(-)Na(+) (1, IPA/NO) with BrCH(2)OAc produced a stable derivative of structure iPrHN-N(O)═NO-CH(2)OAc (2, AcOM-IPA/NO), which hydrolyzed an order of magnitude more slowly than 1 at pH 7.4 and 37 °C. Hydrolysis of 2 to generate HNO proceeded by at least two mechanisms. In the presence of esterase, straightforward dissociation to acetate, formaldehyde, and 1 was the dominant path. In the absence of enzyme, free 1 was not observed as an intermediate and the ratio of NO to HNO among the products approached zero. To account for this surprising result, we propose a mechanism in which base-induced removal of the N-H proton of 2 leads to acetyl group migration from oxygen to the neighboring nitrogen, followed by cleavage of the resulting rearrangement product to isopropanediazoate ion and the known HNO precursor, CH(3)-C(O)-NO. The trappable yield of HNO from 2 was significantly enhanced over 1 at physiological pH, in part because the slower rate of hydrolysis for 2 generated a correspondingly lower steady-state concentration of HNO, thus, minimizing self-consumption and enhancing trapping by biological targets such as metmyoglobin and glutathione. Consistent with the chemical trapping efficiency data, micromolar concentrations of prodrug 2 displayed significantly more potent sarcomere shortening effects relative to 1 on ventricular myocytes isolated from wild-type mouse hearts, suggesting that 2 may be a promising lead compound for the development of heart failure therapies.


Assuntos
Compostos Azo/química , Doadores de Óxido Nítrico/química , Óxidos de Nitrogênio/química , Pró-Fármacos/química , Animais , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Células Musculares/química , Células Musculares/metabolismo
10.
Biochem Biophys Res Commun ; 402(2): 340-4, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20946877

RESUMO

Contractile dysfunction and diminished response to ß-adrenergic agonists are characteristics for failing hearts. Chemically donated nitroxyl (HNO) improves contractility in failing hearts and thus may have therapeutic potential. Yet, there is a need for pharmacologically suitable donors. In this study we tested whether the pure and long acting HNO donor, 1-nitrosocyclohexyl acetate (NCA), affects contractile force in normal and pathological ventricular myocytes (VMs) as well as in isolated hearts. VMs were isolated from mice either subjected to isoprenaline-infusion (ISO; 30 µg/g per day) or to vehicle (0.9% NaCl) for 5 days. Sarcomere shortening and Ca2+ transients were simultaneously measured using the IonOptix system. Force of contraction of isolated hearts was measured by a Langendorff-perfusion system. NCA increased peak sarcomere shortening by+40-200% in a concentration-dependent manner (EC50 ∼55 µM). Efficacy and potency did not differ between normal and chronic ISO VMs, despite the fact that the latter displayed a markedly diminished inotropic response to acute ß-adrenergic stimulation with ISO (1 µM). NCA (60 µM) increased peak sarcomere shortening and Ca2+ transient amplitude by ∼200% and ∼120%, respectively, suggesting effects on both myofilament Ca2+ sensitivity and sarcoplasmic reticulum (SR) Ca2+ cycling. Importantly, NCA did not affect diastolic Ca2+ or SR Ca2+ content, as assessed by rapid caffeine application. NCA (45 µM) increased force of contraction by 30% in isolated hearts. In conclusion, NCA increased contractile force in normal and ß-adrenergically desensitized VMs as well as in isolated mouse hearts. This profile warrants further investigations of this HNO donor in the context of heart failure.


Assuntos
Acetatos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Compostos Nitrosos/farmacologia , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Óxidos de Nitrogênio/metabolismo
11.
J Neurochem ; 110(6): 1766-73, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19619135

RESUMO

Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.


Assuntos
Ácido Glutâmico/toxicidade , Infarto da Artéria Cerebral Média/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Óxidos de Nitrogênio/farmacologia , Estresse Oxidativo/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Infarto Encefálico/etiologia , Infarto Encefálico/prevenção & controle , Células Cultivadas , Dinoprosta/análogos & derivados , Dinoprosta/urina , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ensaio de Imunoadsorção Enzimática/métodos , F2-Isoprostanos/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Infarto da Artéria Cerebral Média/complicações , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Nitritos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estatísticas não Paramétricas , Sais de Tetrazólio , Tiazóis , Fatores de Tempo
12.
Arch Pharm Res ; 32(8): 1139-53, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19727606

RESUMO

For the past couple of decades nitric oxide (NO) and nitroxyl (HNO) have been extensively studied due to the important role they play in many physiological and/or pharmacological processes. Many researchers have reported important signaling pathways as well as mechanisms of action of these species, showing direct and indirect effects depending on the environment. Both NO and HNO can react with, among others, metals, proteins, thiols and heme proteins via unique and distinct chemistry leading to improvement of some clinical conditions. Understanding the basic chemistry of NO and HNO and distinguishing their mechanisms of action as well as methods of detection are crucial for understanding the current and potential clinical applications. In this review, we summarize some of the most important findings regarding NO and HNO chemistry, revealing some of the possible mechanisms of their beneficial actions.


Assuntos
Óxido Nítrico/química , Óxidos de Nitrogênio/química , Animais , Humanos , Óxido Nítrico/fisiologia , Óxidos de Nitrogênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo
13.
Free Radic Biol Med ; 45(5): 578-84, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18503778

RESUMO

The chemical reactivity, toxicology, and pharmacological responses to nitroxyl (HNO) are often distinctly different from those of nitric oxide (NO). The discovery that HNO donors may have pharmacological utility for treatment of cardiovascular disorders such as heart failure and ischemia reperfusion has led to increased speculation of potential endogenous pathways for HNO biosynthesis. Here, the ability of heme proteins to utilize H2O2 to oxidize hydroxylamine (NH2OH) or N-hydroxy-L-arginine (NOHA) to HNO was examined. Formation of HNO was evaluated with a recently developed selective assay in which the reaction products in the presence of reduced glutathione (GSH) were quantified by HPLC. Release of HNO from the heme pocket was indicated by formation of sulfinamide (GS(O)NH2), while the yields of nitrite and nitrate signified the degree of intramolecular recombination of HNO with the heme. Formation of GS(O)NH2 was observed upon oxidation of NH2OH, whereas NOHA, the primary intermediate in oxidation of L-arginine by NO synthase, was apparently resistant to oxidation by the heme proteins utilized. In the presence of NH2OH, the highest yields of GS(O)NH2 were observed with proteins in which the heme was coordinated to a histidine (horseradish peroxidase, lactoperoxidase, myeloperoxidase, myoglobin, and hemoglobin) in contrast to a tyrosine (catalase) or cysteine (cytochrome P450). That peroxidation of NH2OH by horseradish peroxidase produced free HNO, which was able to affect intracellular targets, was verified by conversion of 4,5-diaminofluorescein to the corresponding fluorophore within intact cells.


Assuntos
Hemeproteínas/metabolismo , Hidroxilamina/metabolismo , Óxidos de Nitrogênio/metabolismo , Peróxidos/metabolismo , Arginina/análogos & derivados , Arginina/metabolismo , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/metabolismo , Humanos , Óxidos de Nitrogênio/química
14.
Free Radic Biol Med ; 45(1): 18-31, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18439435

RESUMO

Nitric oxide (NO) has earned the reputation of being a signaling mediator with many diverse and often opposing biological activities. The diversity in response to this simple diatomic molecule comes from the enormous variety of chemical reactions and biological properties associated with it. In the past few years, the importance of steady-state NO concentrations has emerged as a key determinant of its biological function. Precise cellular responses are differentially regulated by specific NO concentration. We propose five basic distinct concentration levels of NO activity: cGMP-mediated processes ([NO]<1-30 nM), Akt phosphorylation ([NO] = 30-100 nM), stabilization of HIF-1alpha ([NO] = 100-300 nM), phosphorylation of p53 ([NO]>400 nM), and nitrosative stress (1 microM). In general, lower NO concentrations promote cell survival and proliferation, whereas higher levels favor cell cycle arrest, apoptosis, and senescence. Free radical interactions will also influence NO signaling. One of the consequences of reactive oxygen species generation is to reduce NO concentrations. This antagonizes the signaling of nitric oxide and in some cases results in converting a cell-cycle arrest profile to a cell survival profile. The resulting reactive nitrogen species that are generated from these reactions can also have biological effects and increase oxidative and nitrosative stress responses. A number of factors determine the formation of NO and its concentration, such as diffusion, consumption, and substrate availability, which are referred to as kinetic determinants for molecular target interactions. These are the chemical and biochemical parameters that shape cellular responses to NO. Herein we discuss signal transduction and the chemical biology of NO in terms of the direct and indirect reactions.


Assuntos
Óxido Nítrico/química , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Difusão , Humanos , Cinética
15.
Cancer Res ; 66(24): 11600-4, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17178853

RESUMO

Asbestos exposure is strongly associated with the development of malignant mesothelioma, yet the mechanistic basis of this observation has not been resolved. Carcinogenic transformation or tumor progression mediated by asbestos may be related to the generation of free radical species and perturbation of cell signaling and transcription factors. We report here that exposure of human mesothelioma or lung carcinoma cells to nitric oxide (NO) in the presence of crocidolite asbestos resulted in a marked decrease in intracellular nitrosation and diminished NO-induced posttranslational modifications of tumor-associated proteins (hypoxia-inducible factor-1alpha and p53). Crocidolite rapidly scavenged NO with concomitant conversion to nitrite (NO(2)(-)). Crocidolite also catalyzed the nitration of cellular proteins in the presence of NO(2)(-) and hydrogen peroxide. Nitrated protein adducts are a prominent feature of asbestos-induced lung injury. These data highlight the ability of asbestos to induce phenotypic cellular changes through two processes: (a) by directly reducing bioactive NO levels and preventing its subsequent interaction with target molecules and (b) by increasing oxidative damage and protein modifications through NO(2) production and 3-nitrotyrosine formation.


Assuntos
Amianto/farmacologia , Óxido Nítrico/fisiologia , Nitritos/metabolismo , Soroalbumina Bovina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Bovinos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Fosfosserina , Proteína Supressora de Tumor p53/efeitos dos fármacos
16.
Sci Rep ; 7(1): 9938, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855531

RESUMO

Despite the mechanisms for endogenous nitroxyl (HNO) production and action being incompletely understood, pharmacological donors show broad therapeutic promise and are in clinical trials. Mass spectrometry and site-directed mutagenesis showed that chemically distinct HNO donors 1-nitrosocyclohexyl acetate or Angeli's salt induced disulfides within cGMP-dependent protein kinase I-alpha (PKGIα), an interdisulfide between Cys42 of the two identical subunits of the kinase and a previously unobserved intradisulfide between Cys117 and Cys195 in the high affinity cGMP-binding site. Kinase activity was monitored in cells transfected with wildtype (WT), Cys42Ser or Cys117/195Ser PKGIα that cannot form the inter- or intradisulfide, respectively. HNO enhanced WT kinase activity, an effect significantly attenuated in inter- or intradisulfide-deficient PKGIα. To investigate whether the intradisulfide modulates cGMP binding, real-time imaging was performed in vascular smooth muscle cells expressing a FRET-biosensor comprising the cGMP-binding sites of PKGIα. HNO induced FRET changes similar to those elicited by an increase of cGMP, suggesting that intradisulfide formation is associated with activation of PKGIα. Intradisulfide formation in PKGIα correlated with enhanced HNO-mediated vasorelaxation in mesenteric arteries in vitro and arteriolar dilation in vivo in mice. HNO induces intradisulfide formation in PKGIα, inducing the same effect as cGMP binding, namely kinase activation and thus vasorelaxation.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/metabolismo , Dissulfetos/metabolismo , Mutagênese Sítio-Dirigida , Óxidos de Nitrogênio/farmacologia , Animais , Domínio Catalítico , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Cisteína/genética , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Masculino , Espectrometria de Massas , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Oxirredução
17.
Free Radic Biol Med ; 41(10): 1606-18, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17045928

RESUMO

Generation of peroxynitrite (ONOO-) as a result of altered redox balance has been shown to affect cardiac function; however, inconsistencies in the data exist, particularly for myocardial contractility. The hypothesis that the cardiac impact of ONOO- formation depends on its site of generation, intravascular or intramyocardial, was examined. Cardiac contractility was assessed by pressure-volume analysis to delineate vascular versus cardiac changes on direct infusion of ONOO- into the right atria of conscious dogs both with normal cardiac function and in heart failure. Additionally, ONOO- was administered to isolated murine cardiomyocytes to mimic in situ cardiac generation. When infused in vivo, ONOO- had little impact on inotropy but led to systemic arterial dilation, likely as a result of rapid decomposition to NO2- and NO3-. In contrast, infused ONOO- was long lived enough to abolish beta-adrenergic (dobutamine)-stimulated contractility/relaxation, most likely through catecholamine oxidation to aminochrome. When administered to isolated murine cardiomyocytes, ONOO- induced a rapid reduction in sarcomere shortening and whole cell calcium transients, although neither decomposed ONOO- or NaNO2 had any effect. Thus, systemic generation of ONOO- is unlikely to have primary cardiac effects, but may modulate cardiac contractile reserve, via blunted beta-adrenergic stimulation, and vascular tone, as a result of generation of NO2- and NO3-. However, myocyte generation of ONOO- may impair contractile function by directly altering Ca2+ handling. These data demonstrate that the site of generation within the cardiovascular system largely dictates the ability of ONOO- to directly or indirectly modulate cardiac pump function.


Assuntos
Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Diástole/efeitos dos fármacos , Dobutamina/antagonistas & inibidores , Dobutamina/farmacologia , Cães , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Volume Sistólico/efeitos dos fármacos
18.
Free Radic Biol Med ; 40(6): 1056-66, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16540401

RESUMO

Nitroxyl (HNO) exhibits unique pharmacological properties that often oppose those of nitric oxide (NO), in part due to differences in reactivity toward thiols. Prior investigations suggested that the end products arising from the association of HNO with thiols were condition-dependent, but were inconclusive as to product identity. We therefore used HPLC techniques to examine the chemistry of HNO with glutathione (GSH) in detail. Under biological conditions, exposure to HNO donors converted GSH to both the sulfinamide [GSONH2] and the oxidized thiol (GSSG). Higher thiol concentrations generally favored a higher GSSG ratio, suggesting that the products resulted from competitive consumption of a single intermediate (GSNHOH). Formation of GSONH2 was not observed with other nitrogen oxides (NO, N2O3, NO2, or ONOO(-)),indicating that it is a unique product of the reaction of HNO with thiols. The HPLC assay was able to detect submicromolar concentrations of GSONH2. Detection of GSONH2 was then used as a marker for HNO production from several proposed biological pathways, including thiol-mediated decomposition of S-nitrosothiols and peroxidase-driven oxidation of hydroxylamine (an end product of the reaction between GSH and HNO) and NG-hydroxy-l-arginine (an NO synthase intermediate). These data indicate that free HNO can be biosynthesized and thus may function as an endogenous signaling agent that is regulated by GSH content.


Assuntos
Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/metabolismo , Espécies Reativas de Nitrogênio/análise , Arginina/análogos & derivados , Arginina/metabolismo , Dimerização , Glutationa/análogos & derivados , Glutationa/metabolismo , Hidroxilamina/metabolismo , Nitritos/metabolismo , Dióxido de Nitrogênio/metabolismo , Ácido Peroxinitroso/metabolismo
19.
Antioxid Redox Signal ; 8(7-8): 1329-37, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16910780

RESUMO

The dual or biphasic responses of cancer to nitric oxide (NO) arise from its concentration dependent ability to regulate tumor growth, migration, invasion, survival, angiogenesis, and metastasis. The outcome of these various NO-dependent processes is dictated by several factors including NO flux, the chemical redox environment, and the duration of NO exposure. Further, it was recently discovered that an NO-induced redox flux in vascular endothelial cells hypersensitizes these cells to the antiangiogenic effects of thrombospondin-1. This suggests a novel treatment paradigm for targeting tumor-driven angiogenesis that combines redox modulation with mimetic derivatives of thrombospondin-1. This article discusses the biphasic nature of NO in cancer biology and the implications of NO-driven redox flux for modulation of tumor-stimulated angiogenesis, growth, and metastasis.


Assuntos
Biologia , Neoplasias/metabolismo , Óxido Nítrico/farmacologia , Animais , Materiais Biomiméticos/farmacologia , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Humanos , Modelos Biológicos , Metástase Neoplásica/tratamento farmacológico , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Oxirredução , Trombospondina 1/farmacologia , Fatores de Tempo
20.
Antioxid Redox Signal ; 8(7-8): 1363-71, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16910783

RESUMO

Nitrite (NO(2)-), N (G)-hydroxy-L-arginine (NOHA), and hydroxylamine (NH(2)OH) are products of nitric oxide synthase (NOS) activity and can also be formed by secondary reactions of nitric oxide (NO). These compounds are commonly considered to be rather stable and as such to be dosimeters of NO biosynthesis. However, each can be converted via metal-catalyzed reactions into either NO or other reactive nitrogen oxide species (RNOS), such as nitrogen dioxide (NO(2)) and nitroxyl (HNO), which have biologic activities distinct from those of the parent molecules. Consequently, certain aspects of tissue regulation controlled by RNOS may be dictated to a significant extent by metal-dependent reactions, thereby offering unique advantages for cellular and tissue regulation. For instance, because many metal-catalyzed reactions depend on the redox and oxygen status of the cellular environment, such reactions could serve as redox indicators. Formation of RNOS by metal-mediated pathways would confine the chemistry of these species to specific cellular sites. Additionally, such mechanisms would be independent both of NO and NOS, thus increasing the lifetime of RNOS that react with NO. Thus metal-mediated conversion of nitrite, NOHA, and NH(2)OH into biologically active agents may provide a unique signaling mechanism. In this review, we discuss the biochemistry of such reactions in the context of their pharmacologic and biologic implications.


Assuntos
Metais/farmacologia , Óxido Nítrico Sintase/química , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/química , Oxigênio/química , Transdução de Sinais , Arginina/metabolismo , Previsões , Hidroxilaminas/metabolismo , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Nitritos/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA