Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 26(5): 444-455, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38363248

RESUMO

BACKGROUND AIMS: Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS: An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS: No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen ß-chain were the most differentially expressed proteins between severity groups. CONCLUSION: Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.


Assuntos
COVID-19 , Vesículas Extracelulares , Proteômica , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Adulto , Espectrometria de Massas em Tandem , Cromatografia Líquida
2.
Mol Ther ; 31(11): 3243-3258, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37735872

RESUMO

Current asthma therapies focus on reducing symptoms but fail to restore existing structural damage. Mesenchymal stromal cell (MSC) administration can ameliorate airway inflammation and reverse airway remodeling. However, differences in patient disease microenvironments seem to influence MSC therapeutic effects. A polymorphic CATT tetranucleotide repeat at position 794 of the human macrophage migration inhibitory factor (hMIF) gene has been associated with increased susceptibility to and severity of asthma. We investigated the efficacy of human MSCs in high- vs. low-hMIF environments and the impact of MIF pre-licensing of MSCs using humanized MIF mice in a clinically relevant house dust mite (HDM) model of allergic asthma. MSCs significantly attenuated airway inflammation and airway remodeling in high-MIF-expressing CATT7 mice but not in CATT5 or wild-type littermates. Differences in efficacy were correlated with increased MSC retention in the lungs of CATT7 mice. MIF licensing potentiated MSC anti-inflammatory effects at a previously ineffective dose. Mechanistically, MIF binding to CD74 expressed on MSCs leads to upregulation of cyclooxygenase 2 (COX-2) expression. Blockade of CD74 or COX-2 function in MSCs prior to administration attenuated the efficacy of MIF-licensed MSCs in vivo. These findings suggest that MSC administration may be more efficacious in severe asthma patients with high MIF genotypes (CATT6/7/8).


Assuntos
Asma , Fatores Inibidores da Migração de Macrófagos , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Remodelação das Vias Aéreas , Asma/terapia , Ciclo-Oxigenase 2/genética , Inflamação/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Células-Tronco Mesenquimais/metabolismo
3.
Mol Ther ; 31(9): 2681-2701, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340634

RESUMO

Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , MicroRNAs , Humanos , Animais , Camundongos , Influenza Humana/complicações , Influenza Humana/genética , Influenza Humana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ocludina/genética , Ocludina/metabolismo , Lesão Pulmonar/metabolismo , Junções Íntimas/metabolismo , Carga Viral , Vírus da Influenza A Subtipo H1N1/genética , Camundongos Endogâmicos C57BL , Antivirais
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474059

RESUMO

Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and increased membrane permeability, which represents the leading cause of mortality in ICUs. Mechanical ventilation strategies are at the forefront of supportive approaches for ARDS. Recently, an increasing understanding of RNA biology, function, and regulation, as well as the success of RNA vaccines, has spurred enthusiasm for the emergence of novel RNA-based therapeutics. The most common types of RNA seen in development are silencing (si)RNAs, antisense oligonucleotide therapy (ASO), and messenger (m)RNAs that collectively account for 80% of the RNA therapeutics pipeline. These three RNA platforms are the most mature, with approved products and demonstrated commercial success. Most recently, miRNAs have emerged as pivotal regulators of gene expression. Their dysregulation in various clinical conditions offers insights into ARDS pathogenesis and offers the innovative possibility of using microRNAs as targeted therapy. This review synthesizes the current state of the literature to contextualize the therapeutic potential of miRNA modulation. It considers the potential for miR-based therapeutics as a nuanced approach that incorporates the complexity of ARDS pathophysiology and the multifaceted nature of miRNA interactions.


Assuntos
MicroRNAs , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , MicroRNAs/genética , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pneumonia/complicações , Respiração Artificial/efeitos adversos
5.
Clin Proteomics ; 20(1): 17, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031181

RESUMO

INTRODUCTION: Proteomic analysis of human plasma by LC-ESI-MS/MS has discovered a limited number of new cellular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection. However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative enzymes. METHODS: Human plasma from COVID-19 and ICU-ARDS was analyzed by classical analytical biochemistry techniques and classical frequency-based statistical approaches to look for prognostic markers of severe COVID-19 lung damage. Plasma proteins from COVID-19 and ICU-ARDS were identified and enumerated versus the controls of normal human plasma (NHP) by LC-ESI-MS/MS. The observation frequency of proteins detected in COVID-19 and ICU-ARDS patients were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square (χ2) distribution. RESULTS: PCR showed the presence of MT-ND1 DNA in the plasma of COVID-19, ICU-ARDS, as well as normal human plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in COVID-19 and ICU-ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by dot blotting on PVDF against a purified cytochrome c standard preparation for H2O2 dependent reaction with luminol as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID-19 and ICU-ARDS patients. DISCUSSION: The results from PCR, LC-ESI-MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that mitochondrial components were present in the plasma, in agreement with the established central role of the mitochondria in SARS-COV-2 biology. The cytochrome activity assay showed that there was the equivalent of at least nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC-ESI-MS/MS. The release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity of cell damage and lung injury in COVID-19 infection and ICU-ARDS.

6.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175936

RESUMO

The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Sepse , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Pulmão , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Sepse/metabolismo
7.
Mol Med ; 28(1): 99, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986237

RESUMO

BACKGROUND: Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease processes including sepsis. MAIN BODY: The current review adopted a strategic approach to analyzing the widespread literature on the topic of miRNAs and sepsis. A pubmed search of "miRNA or microRNA or small RNA and sepsis not review" up to and including January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scrutinized for their content and important themes on the topic were identified and subsequently discussed, including an in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular vesicles. CONCLUSION: Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have consistent directional changes in peripheral blood of septic patients across numerous studies with strong data supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication and therapeutic agency.


Assuntos
MicroRNAs , Sepse , Humanos , MicroRNAs/metabolismo , RNA Mensageiro , Sepse/genética
8.
Eur Respir J ; 59(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34112731

RESUMO

Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Lesão Pulmonar Aguda/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais , Humanos , Camundongos , MicroRNAs/genética , Sepse/complicações , Sepse/terapia
9.
Cytotherapy ; 24(8): 774-788, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613962

RESUMO

The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.


Assuntos
Estado Terminal , Pneumopatias , Terapia Baseada em Transplante de Células e Tecidos , Estado Terminal/terapia , Terapia Genética , Humanos , Pneumopatias/genética , Pneumopatias/terapia , Células-Tronco
10.
Crit Care ; 26(1): 114, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449071

RESUMO

BACKGROUND: Late mortality risk in sepsis-survivors persists for years with high readmission rates and low quality of life. The present study seeks to link the clinical sepsis-survivors heterogeneity with distinct biological profiles at ICU discharge and late adverse events using an unsupervised analysis. METHODS: In the original FROG-ICU prospective, observational, multicenter study, intensive care unit (ICU) patients with sepsis on admission (Sepsis-3) were identified (N = 655). Among them, 467 were discharged alive from the ICU and included in the current study. Latent class analysis was applied to identify distinct sepsis-survivors clinical classes using readily available data at ICU discharge. The primary endpoint was one-year mortality after ICU discharge. RESULTS: At ICU discharge, two distinct subtypes were identified (A and B) using 15 readily available clinical and biological variables. Patients assigned to subtype B (48% of the studied population) had more impaired cardiovascular and kidney functions, hematological disorders and inflammation at ICU discharge than subtype A. Sepsis-survivors in subtype B had significantly higher one-year mortality compared to subtype A (respectively, 34% vs 16%, p < 0.001). When adjusted for standard long-term risk factors (e.g., age, comorbidities, severity of illness, renal function and duration of ICU stay), subtype B was independently associated with increased one-year mortality (adjusted hazard ratio (HR) = 1.74 (95% CI 1.16-2.60); p = 0.006). CONCLUSIONS: A subtype with sustained organ failure and inflammation at ICU discharge can be identified from routine clinical and laboratory data and is independently associated with poor long-term outcome in sepsis-survivors. Trial registration NCT01367093; https://clinicaltrials.gov/ct2/show/NCT01367093 .


Assuntos
Qualidade de Vida , Sepse , Humanos , Unidades de Terapia Intensiva , Análise de Classes Latentes , Estudos Prospectivos , Sepse/complicações , Sepse/epidemiologia , Sobreviventes
11.
Exp Cell Res ; 399(2): 112473, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428902

RESUMO

Sepsis is a complicated multi-system disorder characterized by a dysregulated host response to infection. Despite substantial progress in the understanding of mechanisms of sepsis, translation of these advances into clinically effective therapies remains challenging. Mesenchymal Stromal Cells (MSCs) possess immunomodulatory properties that have shown therapeutic promise in preclinical models of sepsis. The therapeutic effects of MSCs may vary depending on the source and type of these cells. In this comparative study, the gene expression pattern and surface markers of bone marrow-derived MSCs (BM-MSCs) and umbilical cord-derived MSCs (UC-MSCs) as well as their therapeutic effects in a clinically relevant mouse model of polymicrobial sepsis, cecal ligation and puncture (CLP), were investigated. The results showed remarkable differences in gene expression profile, surface markers and therapeutic potency in terms of enhancing survival and pro/anti-inflammatory responses between the two MSC types. BM-MSCs improved survival concomitant with an enhanced systemic bacterial clearance and improved inflammatory profile post CLP surgery. Despite some improvement in the inflammatory profile of the septic animals, treatment with UC-MSCs did not enhance survival or bacterial clearance. Overall, the beneficial therapeutic effects of BM-MSCs over UC-MSCs may likely be attributed to their pro-inflammatory function, and to some extent anti-inflammatory features, reflected in their gene expression pattern enhancing macrophage polarization to M1/M2 phenotypes resulting in a balanced pro- and anti-inflammatory response against polymicrobial sepsis.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Sepse/terapia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Imunofenotipagem , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sepse/genética , Sepse/imunologia , Sepse/patologia
12.
Eur Respir J ; 58(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33795318

RESUMO

BACKGROUND: Despite increased interest in mesenchymal stromal cell (MSC)-based cell therapies for acute respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and our understanding of the potential in vivo mechanisms of MSC actions in ARDS remains limited. ARDS is driven by an acute severe innate immune dysregulation, often characterised by inflammation, coagulation and cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined. AIM: The aim of this study was to comparatively assess how the inflammatory environment present in ARDS lungs versus the lung environment present in healthy volunteers alters MSC behaviour. METHODS: Clinical-grade human bone marrow-derived MSCs (hMSCs) were exposed to bronchoalveolar lavage fluid (BALF) samples obtained from ARDS patients or from healthy volunteers. Following exposure, hMSCs and their conditioned media were evaluated for a broad panel of relevant properties, including viability, levels of expression of inflammatory cytokines, gene expression, cell surface human leukocyte antigen expression, and activation of coagulation and complement pathways. RESULTS: Pro-inflammatory, pro-coagulant and major histocompatibility complex (self-recognition) related gene expression was markedly upregulated in hMSCs exposed ex vivo to BALF obtained from healthy volunteers. These changes were less apparent and often opposite in hMSCs exposed to ARDS BALF samples. CONCLUSION: These data provide new insights into how hMSCs behave in healthy versus inflamed lung environments, and strongly suggest that the inflamed environment in ARDS induces hMSC responses that are potentially beneficial for cell survival and actions. This further highlights the need to understand how different disease environments affect hMSC functions.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Líquido da Lavagem Broncoalveolar , Humanos , Pulmão
13.
Crit Care Med ; 49(2): 311-323, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332817

RESUMO

OBJECTIVES: In many jurisdictions, ethical concerns require surrogate humane endpoints to replace death in small animal models of acute lung injury. Heterogenous selection and reporting of surrogate endpoints render interpretation and generalizability of findings between studies difficult. We aimed to establish expert-guided consensus among preclinical scientists and laboratory animal veterinarians on selection and reporting of surrogate endpoints, monitoring of these models, and the use of analgesia. DESIGN: A three-round consensus process, using modified Delphi methodology, with researchers who use small animal models of acute lung injury and laboratory animal veterinarians who provide care for these animals. Statements on the selection and reporting of surrogate endpoints, monitoring, and analgesia were generated through a systematic search of MEDLINE and Embase. Participants were asked to suggest any additional potential statements for evaluation. SETTING: A web-based survey of participants representing the two stakeholder groups (researchers, laboratory animal veterinarians). Statements were rated on level of evidence and strength of support by participants. A final face-to-face meeting was then held to discuss results. SUBJECTS: None. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Forty-two statements were evaluated, and 29 were rated as important, with varying strength of evidence. The majority of evidence was based on rodent models of acute lung injury. Endpoints with strong support and evidence included temperature changes and body weight loss. Behavioral signs and respiratory distress also received support but were associated with lower levels of evidence. Participants strongly agreed that analgesia affects outcomes in these models and that none may be necessary following nonsurgical induction of acute lung injury. Finally, participants strongly supported transparent reporting of surrogate endpoints. A prototype composite score was also developed based on participant feedback. CONCLUSIONS: We provide a preliminary framework that researchers and animal welfare committees may adapt for their needs. We have identified knowledge gaps that future research should address.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Comitês de Cuidado Animal/organização & administração , Bem-Estar do Animal/normas , Animais de Laboratório , Consenso , Animais , Biomarcadores , Humanos , Modelos Animais , Médicos Veterinários/normas
14.
Ann Rheum Dis ; 80(9): 1236-1240, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33903092

RESUMO

BACKGROUND: Reports of severe COVID-19 being associated with thrombosis, antiphospholipid antibodies (APLA), and antiphospholipid syndrome have yielded disparate conclusions. Studies comparing patients with COVID-19 with contemporaneous controls of similar severity are lacking. METHODS: 22 COVID-19+ and 20 COVID-19- patients with respiratory failure admitted to intensive care were studied longitudinally. Demographic and clinical data were obtained from the day of admission. APLA testing included anticardiolipin (aCL), anti-ß2glycoprotien 1 (ß2GP1), antidomain 1 ß2GP1 and antiphosphatidyl serine/prothrombin complex. Antinuclear antibodies (ANAs) were detected by immunofluorescence and antibodies to cytokines by a commercially available multiplexed array. Analysis of variance was used for continuous variables and Fisher's exact test was used for categorical variables with α=0.05 and the false discovery rate at q=0.05. RESULTS: APLAs were predominantly IgG aCL (48%), followed by IgM (21%) in all patients, with a tendency towards higher frequency among the COVID-19+. aCL was not associated with surrogate markers of thrombosis but IgG aCL was strongly associated with worse disease severity and higher ANA titres regardless of COVID-19 status. An association between aCL and anticytokine autoantibodies tended to be higher among the COVID-19+. CONCLUSIONS: Positive APLA serology was associated with more severe disease regardless of COVID-19 status. TRIAL REGISTRATION NUMBER: NCT04747782.


Assuntos
Anticorpos Anticardiolipina/imunologia , Anticorpos Antifosfolipídeos/imunologia , Síndrome Antifosfolipídica/imunologia , COVID-19/imunologia , Idoso , Anticorpos Anticardiolipina/sangue , Anticorpos Antifosfolipídeos/sangue , Síndrome Antifosfolipídica/sangue , Síndrome Antifosfolipídica/complicações , COVID-19/sangue , COVID-19/complicações , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
15.
Br J Anaesth ; 127(4): 648-659, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34340836

RESUMO

Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.


Assuntos
Encéfalo/metabolismo , Lesão Pulmonar/fisiopatologia , Respiração Artificial/métodos , Animais , Sistema Nervoso Central/metabolismo , Estado Terminal , Humanos , Insuficiência de Múltiplos Órgãos/fisiopatologia , Respiração com Pressão Positiva/métodos
16.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206441

RESUMO

DJ-1 was originally identified as an oncogene product while mutations of the gene encoding DJ-1/PARK7 were later associated with a recessive form of Parkinson's disease. Its ubiquitous expression and diversity of function suggest that DJ-1 is also involved in mechanisms outside the central nervous system. In the last decade, the contribution of DJ-1 to the protection from ischemia-reperfusion injury has been recognized and its involvement in the pathophysiology of cardiovascular disease is attracting increasing attention. This review describes the current and gaps in our knowledge of DJ-1, focusing on its role in regulating cardiovascular function. In parallel, we present original data showing an association between increased DJ-1 expression and antiapoptotic and anti-inflammatory markers following cardiac and vascular surgical procedures. Future studies should address DJ-1's role as a plausible novel therapeutic target for cardiovascular disease.


Assuntos
Coração/fisiopatologia , Traumatismo por Reperfusão Miocárdica , Miocárdio , Proteína Desglicase DJ-1/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia
17.
Thorax ; 75(7): 556-567, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32546573

RESUMO

INTRODUCTION: Mesenchymal stromal cell (MSC) therapy mitigates lung injury and improves survival in murine models of sepsis. Precise mechanisms of therapeutic benefit remain poorly understood. OBJECTIVES: To identify host-derived regulatory elements that may contribute to the therapeutic effects of MSCs, we profiled the microRNAome (miRNAome) and transcriptome of lungs from mice randomised to experimental polymicrobial sepsis-induced lung injury treated with either placebo or MSCs. METHODS AND RESULTS: A total of 11 997 genes and 357 microRNAs (miRNAs) expressed in lungs were used to generate a statistical estimate of association between miRNAs and their putative mRNA targets; 1395 miRNA:mRNA significant association pairs were found to be differentially expressed (false discovery rate ≤0.05). MSC administration resulted in the downregulation of miR-27a-5p and upregulation of its putative target gene VAV3 (adjusted p=1.272E-161) in septic lungs. In human pulmonary microvascular endothelial cells, miR-27a-5p expression levels were increased while VAV3 was decreased following lipopolysaccharide (LPS) or tumour necrosis factor (TNF) stimulation. Transfection of miR-27a-5p mimic or inhibitor resulted in increased or decreased VAV3 message, respectively. Luciferase reporter assay demonstrated specific binding of miR-27a-5p to the 3'UTR of VAV3. miR27a-5p inhibition mitigated TNF-induced (1) delayed wound closure, increased (2) adhesion and (3) transendothelial migration but did not alter permeability. In vivo, cell infiltration was attenuated by intratracheal coinstillation of the miR-27a-5p inhibitor, but this did not protect against endotoxin-induced oedema formation. CONCLUSIONS: Our data support involvement of miR-27a-5p and VAV3 in cellular adhesion and infiltration during acute lung injury and a potential role for miR-27a-based therapeutics for acute respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda/genética , Regulação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/genética , RNA Mensageiro/genética , Sepse/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , RNA Mensageiro/metabolismo , Transdução de Sinais
18.
Eur Respir J ; 55(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060066

RESUMO

INTRODUCTION: The ex vivo lung perfusion (EVLP) technique has been developed to assess the function of marginal donor lungs and has significantly increased donor lung utilisation. EVLP has also been explored as a platform for donor lung repair through injury-specific treatments such as antibiotics or fibrinolytics. We hypothesised that actively expressed pathways shared between transplantation and EVLP may reveal common mechanisms of injury and potential therapeutic targets for lung repair prior to transplantation. MATERIALS AND METHODS: Retrospective transcriptomics analyses were performed with peripheral tissue biopsies from "donation after brain death" lungs, with 46 pre-/post-transplant pairs and 49 pre-/post-EVLP pairs. Pathway analysis was used to identify and compare the responses of donor lungs to transplantation and to EVLP. RESULTS: 22 pathways were enriched predominantly in transplantation, including upregulation of lymphocyte activation and cell death and downregulation of metabolism. Eight pathways were enriched predominantly in EVLP, including downregulation of leukocyte functions and upregulation of vascular processes. 27 pathways were commonly enriched, including activation of innate inflammation, cell death, heat stress and downregulation of metabolism and protein synthesis. Of the inflammatory clusters, Toll-like receptor/innate immune signal transduction adaptor signalling had the greatest number of nodes and was central to inflammation. These mechanisms have been previously speculated as major mechanisms of acute lung injury in animal models. CONCLUSION: EVLP and transplantation share common molecular features of injury including innate inflammation and cell death. Blocking these pathways during EVLP may allow for lung repair prior to transplantation.


Assuntos
Transplante de Pulmão , Animais , Circulação Extracorpórea , Humanos , Pulmão , Perfusão , Estudos Retrospectivos
19.
Crit Care Med ; 48(5): 745-756, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32167492

RESUMO

OBJECTIVES: Recent evidence from the fields of microbiology and immunology, as well as a small number of human sepsis studies, suggest that epigenetic regulation may play a central role in the pathogenesis of sepsis. The term "epigenetics" refers to regulatory mechanisms that control gene expression but are not related to changes in DNA sequence. These include DNA methylation, histone modifications, and regulation of transcription via non-coding RNAs. Epigenetic modifications, occurring in response to external stressors, lead to changes in gene expression, and thus lie at the intersection between genetics and the environment. In this review, we examine data from in vitro studies, animal studies, and the existing human sepsis studies in epigenetics to demonstrate that epigenetic mechanisms are likely central to the pathogenesis of sepsis and that epigenetic therapies may have potential in the treatment of sepsis and its associated organ failures. DATA SOURCES: Online search of published scientific literature via Pubmed using the term "epigenetics" in combination with the terms "sepsis", "infection", "bacterial infection", "viral infection", "critical illness", "acute respiratory distress syndrome", and "acute lung injury". STUDY SELECTION: Articles were chosen for inclusion based on their relevance to sepsis, acute inflammation, sepsis-related immune suppression, and sepsis-related organ failure. Reference lists were reviewed to identify additional relevant articles. DATA EXTRACTION: Relevant data was extracted and synthesized for narrative review. DATA SYNTHESIS: Epigenetic regulation is a key determinant of gene expression in sepsis. At the onset of infection, host-pathogen interactions often result in epigenetic alterations to host cells that favor pathogen survival. In parallel, the host inflammatory response is characterized by epigenetic modifications in key regulatory genes, including tumor necrosis factor and interleukin-1ß. In human sepsis patients, multiple epigenetic modifying enzymes show differential expression in early sepsis, suggesting a role for epigenetics in coordinating the response to infection. In the later stages of sepsis, epigenetic modifications accompany endotoxin tolerance and the immune-suppressed state. In animal models, treatment with epigenetic modifiers can mitigate the effects of sepsis and improve survival as well as reverse sepsis-associated organ injury. CONCLUSIONS: Epigenetic modifications are associated with key phases of sepsis, from the host-pathogen interaction, to acute inflammation, to immune suppression. Epigenetic markers show promise in the diagnosis and prognosis of sepsis and epigenetic modifying agents show promise as therapeutic tools in animal models of sepsis. Human studies in the area of epigenetics are sorely lacking and should be a priority for sepsis researchers.


Assuntos
Estado Terminal , Epigênese Genética/fisiologia , Sepse/genética , Sepse/fisiopatologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/fisiopatologia , Animais , Biomarcadores , Metilação de DNA/fisiologia , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Histonas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/fisiopatologia , RNA não Traduzido/metabolismo , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/fisiopatologia
20.
Crit Care Med ; 48(2): 142-150, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939781

RESUMO

OBJECTIVES: Epigenetic alterations are an important regulator of gene expression in health and disease; however, epigenetic data in sepsis are lacking. To demonstrate proof of concept and estimate effect size, we performed the first epigenome-wide methylation analysis of whole blood DNA samples from a cohort of septic and nonseptic critically ill patients. DESIGN: A nested case-control study using genomic DNA isolated from whole blood from septic (n = 66) and nonseptic (n = 68) critically ill patients on "Day 1" of ICU admission. Methylation patterns were identified using Illumina 450K arrays with percent methylation expressed as ß values. After quality control, 134 participants and 414,818 autosomal cytosine-phosphate-guanine sites were used for epigenome-wide methylation analyses. SETTING: Tertiary care hospitals. SUBJECTS: Critically ill septic and nonseptic patients. INTERVENTIONS: Observational study. MEASUREMENTS AND MAIN RESULTS: A total of 668 differentially methylated regions corresponding to 443 genes were identified. Known sepsis-associated genes included complement component 3; angiopoietin 2; myeloperoxidase; lactoperoxidase; major histocompatibility complex, class I, A; major histocompatibility complex, class II, isotype DR ß I; major histocompatibility complex, class I, C; and major histocompatibility complex, class II, isotype DQ ß I. When compared with whole blood gene expression data from seven external datasets containing septic and nonseptic patients, 81% of the differentially methylated region-associated genes were differentially expressed in one or more datasets and 31% in three or more datasets. Functional analysis showed enrichment for antigen processing and presentation, methyltransferase activity, cell adhesion, and cell junctions. Analysis by weighted gene coexpression network analysis revealed DNA comethylation modules that were associated with clinical traits including severity of illness, need for vasopressors, and length of stay. CONCLUSIONS: DNA methylation marks may provide important causal and potentially biomarker information in critically ill patients with sepsis.


Assuntos
Estado Terminal , Metilação de DNA/genética , Epigênese Genética/genética , Sepse/genética , Biomarcadores , Estudos de Casos e Controles , Cromossomos Humanos Par 6/genética , Feminino , Humanos , Unidades de Terapia Intensiva , Interferons/metabolismo , Masculino , Escores de Disfunção Orgânica , Projetos Piloto , Centros de Atenção Terciária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA