Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 273(7): 1501-1512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249625

RESUMO

Infections during pregnancy are associated with an increased risk of neuropsychiatric disorders with developmental etiologies, such as schizophrenia and autism spectrum disorders (ASD). Studies have shown that the animal model of maternal immune activation (MIA) reproduces a wide range of phenotypes relevant to the study of neurodevelopmental disorders. Emerging evidence shows that (R)-ketamine attenuates behavioral, cellular, and molecular changes observed in animal models of neuropsychiatric disorders. Here, we investigate whether (R)-ketamine administration during adolescence attenuates some of the phenotypes related to neurodevelopmental disorders in an animal model of MIA. For MIA, pregnant Swiss mice received intraperitoneally (i.p.) lipopolysaccharide (LPS; 100 µg/kg/day) or saline on gestational days 15 and 16. The two MIA-based groups of male offspring received (R)-ketamine (20 mg/kg/day; i.p.) or saline from postnatal day (PND) 36 to 50. At PND 62, the animals were examined for anxiety-like behavior and locomotor activity in the open-field test (OFT), as well as in the social interaction test (SIT). At PND 63, the prefrontal cortex (PFC) was collected for analysis of oxidative balance and gene expression of the cytokines IL-1ß, IL-6, and TGF-ß1. We show that (R)-ketamine abolishes anxiety-related behavior and social interaction deficits induced by MIA. Additionally, (R)-ketamine attenuated the increase in lipid peroxidation and the cytokines in the PFC of the offspring exposed to MIA. The present work suggests that (R)-ketamine administration may have a long-lasting attenuation in deficits in emotional behavior induced by MIA, and that these effects may be attributed to its antioxidant and anti-inflammatory activity in the PFC.


Assuntos
Ketamina , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Gravidez , Animais , Humanos , Feminino , Masculino , Ketamina/efeitos adversos , Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Modelos Animais de Doenças , Citocinas , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo
2.
Physiol Behav ; 276: 114453, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159589

RESUMO

BACKGROUNDS AND AIMS: Childhood obesity is increasing substantially across the world. The World Obesity Federation (WOF) and World Health Organization (WHO) predicted that in 2030 > 1 billion people will be obese, and by 2035 over 4 billion will reach obesity worldwide. According to WHO, the world soon cannot afford the economic cost of obesity, and we need to act to stop obesity acceleration now. Data in the literature supports that the first 1000 days of life are essential in preventing obesity and related adversities. Therefore, using basic research, the present a study that focuses on the immediate effect of overnutrition and serotonin modulation during the lactation period. METHODS: Using a neonatal overfeeding model, male Wistar rats were divided into four groups based on nutrition or serotonin modulation by pharmacological treatment up to 22 days of life. Cellular and mitochondrial function markers, oxidative stress biomarkers and mRNA levels of hedonic and homeostatic genes were evaluated. RESULTS: Our data showed that overfeeding during lactation decrease NAD/NADH ratio, citrate synthase activity, and increase ROS production. Lipid and protein oxidation were increased in overfed animals, with a decrease in antioxidant defenses, we also observe a differential expression of mRNA levels of homeostatic and hedonic genes. On the contrary, serotonin modulation with selective serotonin reuptake inhibitors treatment reduces harmful effects caused by overnutrition. CONCLUSION: Early effects of overnutrition significantly affect the prefrontal cortex at molecular and cellular level, which could mediate obesity-related neurodegenerative dysfunction.


Assuntos
Hipernutrição , Obesidade Infantil , Criança , Humanos , Ratos , Animais , Feminino , Masculino , Sobrepeso , Ratos Wistar , Serotonina , Hipernutrição/complicações , Hipernutrição/metabolismo , Ingestão de Alimentos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro
3.
Mol Neurobiol ; 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001357

RESUMO

Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light-Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA