Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(5): 1455-1465, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37053489

RESUMO

The most abundant proteins on high-density lipoproteins (HDLs), apolipoproteins A-I (APOA1) and A-II (APOA2), are determinants of HDL function with 15 and 9 proteoforms (chemical-structure variants), respectively. The relative abundance of these proteoforms in human serum is associated with HDL cholesterol efflux capacity, and cholesterol content. However, the association between proteoform concentrations and HDL size is unknown. We employed a novel native-gel electrophoresis technique, clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE) paired with mass spectrometry of intact proteins to investigate this association. Pooled serum was fractionated using acrylamide gels of lengths 8 and 25 cm. Western blotting determined molecular diameter and intact-mass spectrometry determined proteoform profiles of each fraction. The 8- and 25 cm experiments generated 19 and 36 differently sized HDL fractions, respectively. The proteoform distribution varied across size. Fatty-acylated APOA1 proteoforms were associated with larger HDL sizes (Pearson's R = 0.94, p = 4 × 10-7) and were approximately four times more abundant in particles larger than 9.6 nm than in total serum; HDL-unbound APOA1 was acylation-free and contained the pro-peptide proAPOA1. APOA2 proteoform abundance was similar across HDL sizes. Our results establish CN-GELFrEE as an effective lipid-particle separation technique and suggest that acylated proteoforms of APOA1 are associated with larger HDL particles.


Assuntos
Apolipoproteínas , Lipoproteínas HDL , Humanos , Tamanho da Partícula , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I , Colesterol/metabolismo , Western Blotting , HDL-Colesterol
2.
Mol Cell Proteomics ; 19(2): 405-420, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31888965

RESUMO

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.


Assuntos
Proteômica/métodos , Raios Ultravioleta , Animais , Anidrases Carbônicas , Células Cultivadas , Cromatografia Líquida , Fibroblastos , Proteínas Fúngicas , Humanos , Camundongos , Miócitos Cardíacos , Mioglobina , Fótons , Pseudomonas aeruginosa , Espectrometria de Massas em Tandem , Ubiquitina
3.
Arch Insect Biochem Physiol ; 102(1): e21591, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31257641

RESUMO

In Brazil, the use of transgenic plants expressing the insect-toxic Bacillus thuringiensis endotoxin has been successfully used as pest control management since 2013 in transgenic soybean lineages against pest caterpillars such as Helicoverpa armigera. These toxins, endogenously expressed by the plants or sprayed over the crops, are ingested by the insect and bind to receptors in the midgut of these animals, resulting in disruption of digestion and lower insect survival rates. Here, we identified and characterized a membrane-associated alkaline phosphatase (ALP) in the midgut of Anticarsia gemmatalis, the main soybean defoliator pest in Brazil, and data suggested that it binds to Cry1Ac toxin in vitro. Our data showed a peak of ALP activity in homogenate samples of the midgut dissected from the 4th and 5th instars larvae. The brush border membrane vesicles obtained from the midgut of these larvae were used to purify a 60 kDa ALP, as detected by in-gel activity and in vitro biochemical characterization using pharmacological inhibitors and mass spectrometry. When Cry1Ac toxin was supplied to the diet, it was efficient in decreasing larval weight gain and survival. Indeed, in vitro incubation of Cry1Ac toxin with the purified ALP resulted in a 43% decrease in ALP specific activity and enzyme-linked immunosorbent assay showed that ALP interacts with Cry1Ac toxin in vitro, thus suggesting that ALP could function as a Cry toxin ligand. This is a first report characterizing an ALP in A. gemmatalis.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Larva/enzimologia , Mariposas/enzimologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/isolamento & purificação , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/ultraestrutura , Proteínas Hemolisinas/toxicidade , Microvilosidades/enzimologia
4.
J Am Soc Mass Spectrom ; 31(7): 1398-1409, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32436704

RESUMO

Protein fragmentation is a critical component of top-down proteomics, enabling gene-specific protein identification and full proteoform characterization. The factors that influence protein fragmentation include precursor charge, structure, and primary sequence, which have been explored extensively for collision-induced dissociation (CID). Recently, noticeable differences in CID-based fragmentation were reported for native versus denatured proteins, motivating the need for scoring metrics that are tailored specifically to native top-down mass spectrometry (nTDMS). To this end, position and intensity were tracked for 10,252 fragment ions produced by higher-energy collisional dissociation (HCD) of 159 native monomers and 70 complexes. We used published structural data to explore the relationship between fragmentation and protein topology and revealed that fragmentation events occur at a large range of relative residue solvent accessibility. Additionally, our analysis found that fragment ions at sites with an N-terminal aspartic acid or a C-terminal proline make up on average 40 and 27%, respectively, of the total matched fragment ion intensity in nTDMS. Percent intensity contributed by each amino acid was determined and converted into weights to (1) update the previously published C-score and (2) construct a native Fragmentation Propensity Score. Both scoring systems showed an improvement in protein identification or characterization in comparison to traditional methods and overall increased confidence in results with fewer matched fragment ions but with high probability nTDMS fragmentation patterns. Given the rise of nTDMS as a tool for structural mass spectrometry, we forward these scoring metrics as new methods to enhance analysis of nTDMS data.


Assuntos
Íons , Proteoma , Proteômica/métodos , Animais , Linhagem Celular , Bases de Dados de Proteínas , Humanos , Íons/análise , Íons/química , Espectrometria de Massas , Camundongos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteoma/análise , Proteoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA