Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477330

RESUMO

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

2.
Nano Lett ; 24(32): 9793-9800, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087649

RESUMO

O3-type layered oxides have been extensively studied as cathode materials for sodium-ion batteries due to their high reversible capacity and high initial sodium content, but they suffer from complex phase transitions and an unstable structure during sodium intercalation/deintercalation. Herein, we synthesize a high-entropy O3-type layered transition metal oxide, NaNi0.3Cu0.05Fe0.1Mn0.3Mg0.05Ti0.2O2 (NCFMMT), by simultaneously doping Cu, Mg, and Ti into its transition metal layers, which greatly increase structural entropy, thereby reducing formation energy and enhancing structural stability. The high-entropy NCFMMT cathode exhibits significantly improved cycling stability (capacity retention of 81.4% at 1C after 250 cycles and 86.8% at 5C after 500 cycles) compared to pristine NaNi0.3Fe0.4Mn0.3O2 (71% after 100 cycles at 1C), as well as remarkable air stability. Finally, the NCFMMT//hard carbon full-cell batteries deliver a high initial capacity of 103 mAh g-1 at 1C, with 83.8 mAh g-1 maintained after 300 cycles (capacity retention of 81.4%).

3.
Nano Lett ; 24(2): 592-600, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039420

RESUMO

Engineering of the catalysts' structural stability and electronic structure could enable high-throughput H2 production over electrocatalytic water splitting. Herein, a double-shell interlayer confinement strategy is proposed to modulate the spatial position of Ru nanoparticles in hollow carbon nanoreactors for achieving tunable sizes and electronic structures toward enhanced H2 evolution. Specifically, the Ru can be anchored in either the inner layer (Ru-DSC-I) or the external shell (Ru-DSC-E) of double-shell nanoreactors, and the size of Ru is reduced from 2.2 to 0.9 nm because of the double-shell confinement effect. The electronic structures are efficiently optimized thereby stabilizing active sites and lowering the reaction barrier. According to finite element analysis results, the mesoscale mass diffusion can be promoted in the double-shell configuration. The Ru-DSC-I nanoreactor exhibits a much lower overpotential (η10 = 73.5 mV) and much higher stability (100 mA cm-2). Our work might shed light on the precise design of multishell catalysts with efficient refining electrostructures toward electrosynthesis applications.

4.
Small ; 20(26): e2310201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243889

RESUMO

Enhancing the mobility of lithium-ions (Li+) through surface engineering is one of major challenges facing fast-charging lithium-ion batteries (LIBs). In case of demanding charging conditions, the use of a conventional artificial graphite (AG) anode leads to an increase in operating temperature and the formation of lithium dendrites on the anode surface. In this study, a biphasic zeolitic imidazolate framework (ZIF)-AG anode, designed strategically and coated with a mesoporous material, is verified to improve the pathways of Li+ and electrons under a high charging current density. In particular, the graphite surface is treated with a coating of a ZIF-8-derived carbon nanoparticles, which addresses sufficient surface porosity, enabling this material to serve as an electrolyte reservoir and facilitate Li+ intercalation. Moreover, the augmentation in specific surface area proves advantageous in reducing the overpotential for interfacial charge transfer reactions. In practical terms, employing a full-cell with the biphasic ZIF-AG anode results in a shorter charging time and improved cycling performance, demonstrating no evidence of Li plating during 300 cycles under 3.0 C-charging and 1.0 C-discharging. The research endeavors to contribute to the progress of anode materials by enhancing their charging capability, aligning with the increasing requirements of the electric vehicle applications.

5.
Small ; 20(36): e2311770, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38794870

RESUMO

Developing low-cost and highly efficient bifunctional catalysts for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is a challenging problem in electrochemical overall water splitting. Here, iron, tungsten dual-doped nickel sulfide catalyst (Fe/W-Ni3S2) is synthesized on the nickel foam, and it exhibits excellent OER and HER performance. As a result, the water electrolyze based on Fe/W-Ni3S2 bifunctional catalyst illustrates 10 mA cm-2 at 1.69 V (without iR-compensation) and highly durable overall water splitting over 100 h tested under 500 mA cm-2. Experimental results and DFT calculations indicate that the synergistic interaction between Fe doping and Ni vacancy induced by W leaching during the in situ oxidation process can maximize exposed OER active sites on the reconstructed NiOOH species for accelerating OER kinetics, while the Fe/W dual-doping optimizes the electronic structure of Fe/W-Ni3S2 and the binding strength of intermediates for boosting HER. This study unlocks the different promoting mechanisms of incorporating Fe and W for boosting the OER and HER activity of Ni3S2 for water splitting, which provides significant guidance for designing high-performance bifunctional catalysts for overall water splitting.

6.
Chem Rev ; 122(1): 957-999, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709781

RESUMO

Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.

7.
Nano Lett ; 23(8): 3630-3636, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36847547

RESUMO

The discontinuous interfacial contact of solid-state polymer metal batteries is due to the stress changes in the electrode structure during cycling, resulting in poor ion transport. Herein, a rigid-flexible coupled interface stress modulation strategy is developed to solve the above issues, which is to design a rigid cathode with enhanced solid-solution behavior to guide the uniform distribution of ions and electric field. Meanwhile, the polymer components are optimized to build an organic-inorganic blended flexible interfacial film to relieve the change of interfacial stress and ensure rapid ion transmission. The fabricated battery comprising a Co-modulated P2-type layered cathode (Na0.67Mn2/3Co1/3O2) and a high ion conductive polymer could deliver good cycling stability without distinct capacity fading (72.8 mAh g-1 over 350 cycles at 1 C), outperforming those without Co modulation or interfacial film construction. This work demonstrates a promising rigid-flexible coupled interfacial stress modulation strategy for polymer-metal batteries with excellent cycling stability.

8.
Nano Lett ; 23(13): 6050-6058, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367972

RESUMO

Aqueous zinc (Zn) batteries have been regarded as an alternative to lithium-ion batteries due to their high abundance, low cost, and higher intrinsic safety. However, the low Zn plating/stripping reversibility, Zn dendrite growth, and continuous water consumption have hindered the practical application of aqueous Zn anodes. Herein, a hydrous organic Zn-ion electrolyte based on a dual organic solvent, namely hydrated Zn(BF4)2 zinc salt dissolved in dimethyl carbonate (DMC) and vinyl carbonate (EC) solvents [denoted as Zn(BF4)2/DMC/EC], can address these problems, which not only inhibits the side reactions but also promotes uniform Zn plating/stripping through the formation of a stable solid state interface layer and Zn2+-EC/2DMC pairs. This electrolyte enables the Zn electrode to stably undergo >700 cycles at a rate of 1 mA cm-2 with a Coulombic efficiency of 99.71%. Moreover, the full cell paired with V2O5 also demonstrates excellent cycling stability without capacity decay at 1 A g-1 after 1600 cycles.

9.
Angew Chem Int Ed Engl ; : e202414117, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315791

RESUMO

Rechargeable aqueous Zn metal batteries (AZMBs) are attractive for stationary energy storage due to their low cost and high safety. However, their practical application is hindered by the excessive use of zinc anodes and poor high-temperature performance, caused by severe side reactions and dendritic growth issues. Here, an electrolyte design strategy is reported based on bidentate coordination of Zn2+ and solvent to tailor the solvation structure. The triethylene glycol (TEG) co-solvent with two-oxygen coordination sites is demonstrated to facilitate the formation of an anions-involved solvation shell, greatly reducing the activity of coordinated H2O molecules. The sequential reduction of OTF- anions and TEG to form an organic-inorganic bilayer SEI (hydrophobic organic layer and high ion conductivity inorganic layer), protecting Zn anodes from side reaction and dendrite growth, thus ensuring an unprecedented Zn reversibility (99.95% over 5000 cycles at 0.5 mA cm-2). More importantly, the full cells of Zn||V2O5 exhibit a record-high cumulative capacity (2552 mAh cm-2) under a lean electrolyte condition (E/C ratio = 15 µL mAh-1), a limited Zn supply (N/P ratio = 1.9) and a high areal capacity (3.0 mAh cm-2).

10.
Angew Chem Int Ed Engl ; 63(30): e202405209, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712643

RESUMO

Regulating the electric double layer (EDL) structure of the zinc metal anode by using electrolyte additives is an efficient way to suppress interface side reactions and facilitate uniform zinc deposition. Nevertheless, there are no reports investigating the proactive design of EDL-regulating additives before the start of experiments. Herein, a functional group assembly strategy is proposed to design electrolyte additives for modulating the EDL, thereby realizing a long-lasting zinc metal anode. Specifically, by screening ten common functional groups, N, N-dimethyl-1H-imidazole-1-sulfonamide (IS) is designed by assembling an imidazole group, characterized by its high adsorption capability on the zinc anode, and a sulfone group, which exhibits strong binding with Zn2+ ions. Benefiting from the adsorption functionalization of the imidazole group, the IS molecules occupy the position of H2O in the inner Helmholtz layer of the EDL, forming a molecular protective layer to inhibit H2O-induced side reactions. Meanwhile, the sulfone group in IS, acting as a binding site to Zn2+, promotes the de-solvation of Zn2+ ions, facilitating compact zinc deposition. Consequently, the utilization of IS significantly extending the cycling stability of Zn||Zn and Zn||NaV3O8 ⋅ 1.5H2O full cell. This study offers an innovative approach to the design of EDL regulators for high-performance zinc metal batteries.

11.
Small ; 19(27): e2300165, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974572

RESUMO

Two-dimensional (2D) layered materials have been widely used as catalysts due to their high specific surface area, large fraction of uncoordinated surface atoms, and high charge carrier mobility. Moiré superlattice emerges in 2D layered materials with twist angle or lattice mismatch. By manipulating the moiré superlattice structure, 2D layered materials present modulated electronic band structure, topological edge states, and unconventional superconductivity which are tightly associated with the performance of catalysts. Hence, engineering moiré superlattice structures are proposed to be an important technology in modifying 2D layered materials for improved catalytic properties. However, currently, the investigation of moiré superlattice structure in a catalytic application is still in its infancy. This perspective starts with the discussion of structural features and fabrication strategy of 2D materials with moiré superlattice structure. Afterward, the catalytic applications, including electrocatalytic and photocatalytic applications, are summarized. In particular, the promotion mechanism of the catalytic performance caused by the moiré superlattice structure is proposed. Finally, the perspective is concluded by outlining the remaining challenges and possible solutions for the future development of 2D materials with moiré superlattice structure towards the catalytic applications.

12.
Chem Soc Rev ; 51(23): 9620-9693, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36345857

RESUMO

Anion-exchange membrane (AEM) water electrolyzers (AEMWEs) and fuel cells (AEMFCs) are technologies that, respectively, achieve transformation and utilization of renewable resources in the form of green hydrogen (H2) energy. The significantly reduced cost of their key components (membranes, electrocatalysts, bipolar plates, etc.), quick reaction kinetics, and fewer corrosion problems endow AEM water electrolyzers and fuel cells with overwhelming superiority over their conventional counterparts (e.g., proton-exchange membrane water electrolyzer/fuel cells and alkaline water electrolyzer/fuel cells). Limitations in our fundamental understanding of AEM devices, however, specifically in key components, working management, and operation monitoring, restrict the improvement of cell performance, and they further impede the deployment of AEM water electrolyzers and fuel cells. Therefore, a panoramic view to outline the fundamentals, technological progress, and future perspectives on AEMWEs and AEMFCs is presented. The objective of this review is to (1) present a timely overview of the market development status of green hydrogen technology that is closely associated with AEMWEs (hydrogen production) and AEMFCs (hydrogen utilization); (2) provide an in-depth and comprehensive analysis of AEMWEs and AEMFCs from the viewpoint of all key components (e.g., membranes, ionomers, catalysts, gas diffusion layers, bipolar plates, and membrane electrode assembly (MEA)); (3) summarize the state-of-the-art technologies for working management of AEMWEs and AEMFCs, including electrolyte engineering (electrolyte selection and feeding), water management, gas and heat management, etc.; (4) outline the advances in monitoring the operations of AEMWEs and AEMFCs, which include microscopic and spectroscopic techniques and beyond; and (5) present key aspects that need to be further studied from the perspective of science and engineering to accelerate the deployment of AEMWEs and AEMFCs.

13.
Nano Lett ; 22(21): 8574-8583, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36279311

RESUMO

A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.

14.
Nano Lett ; 22(3): 1302-1310, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089723

RESUMO

For practical sodium-ion batteries, both high electrochemical performance and cost efficiency of the electrode materials are considered as two key parameters. Prussian blue analogues (PBAs) are broadly recognized as promising cathode materials due to their low cost, high theoretical capacity, and cycling stability, although they suffer from low-crystallinity-induced performance deterioration. Herein, a facile "ice-assisted" strategy is presented to prepare highly crystallized PBAs without any additives. By suppressing structure defects, the cathode exhibits a high capacity of 123 mAh g-1 with initial Coulombic efficiency of 87.2%, a long cycling lifespan of 3000 cycles, and significantly enhanced high/low temperature performance and calendar life. Remarkably, the low structure distortion and high sodium diffusion coefficient have been identified via in situ synchrotron powder diffraction and first-principles calculations, while its thermal stability has been analyzed by in situ heated X-ray powder diffraction. We believe the results could pave the way to the low-cost and large-scale application of PBAs in all-climate sodium-ion batteries.

15.
Angew Chem Int Ed Engl ; 62(17): e202219000, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866855

RESUMO

Unstable cathode-electrolyte and/or anode-electrolyte interface in polymer-based sodium-ion batteries (SIBs) will deteriorate their cycle performance. Herein, a unique solvated double-layer quasi-solid polymer electrolyte (SDL-QSPE) with high Na+ ion conductivity is designed to simultaneously improve stability on both cathode and anode sides. Different functional fillers are solvated with plasticizers to improve Na+ conductivity and thermal stability. The SDL-QSPE is laminated by cathode- and anode-facing polymer electrolyte to meet the independent interfacial requirements of the two electrodes. The interfacial evolution is elucidated by theoretical calculations and 3D X-ray microtomography analysis. The Na0.67 Mn2/3 Ni1/3 O2 |SDL-QSPE|Na batteries exhibit 80.4 mAh g-1 after 400 cycles at 1 C with the Coulombic efficiency close to 100 %, which significantly outperforms those batteries using the monolayer-structured QSPE.

16.
Angew Chem Int Ed Engl ; 62(33): e202307123, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37353890

RESUMO

The conventional industrial production of nitrogen-containing fertilizers, such as urea and ammonia, relies heavily on energy-intensive processes, accounting for approximately 3 % of global annual CO2 emissions. Herein, we report a sustainable electrocatalytic approach that realizes direct and selective synthesis of urea and ammonia from co-reduction of CO2 and nitrates under ambient conditions. With the assistance of a copper (Cu)-based salphen organic catalyst, outstanding urea (3.64 mg h-1 mgcat -1 ) and ammonia (9.73 mg h-1 mgcat -1 ) yield rates are achieved, in addition to a remarkable Faradaic efficiency of 57.9±3 % for the former. This work proposes an appealing sustainable route to converting greenhouse gas and waste nitrates by renewable energies into value-added fertilizers.

17.
J Am Chem Soc ; 144(41): 18887-18895, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194558

RESUMO

The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of Tc up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.

18.
Small ; 18(43): e2106635, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35218294

RESUMO

As one of the most competitive candidates for large-scale energy storage, zinc-air batteries (ZABs) have attracted great attention due to their high theoretical specific energy density, low toxicity, high abundance, and high safety. It is highly desirable but still remains a huge challenge, however, to achieve cheap and efficient electrocatalysts to promote their commercialization. Recently, Fe-based single-atom and dual-atom catalysts (SACs and DACs, respectively) have emerged as powerful candidates for ZABs derived from their maximum utilization of atoms, excellent catalytic performance, and low price. In this review, some fundamental concepts in the field of ZABs are presented and the recent progress on the reported Fe-based SACs and DACs is summarized, mainly focusing on the relationship between structure and performance at the atomic level, with the aim of providing helpful guidelines for future rational designs of efficient electrocatalysts with atomically dispersed active sites. Finally, the great advantages and future challenges in this field of ZABs are also discussed.

19.
Small ; 18(43): e2107067, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35491508

RESUMO

Developing efficient platinum (Pt)-based electrocatalysts with high tolerance to CO poisoning for the methanol oxidation reaction is critical for the development of direct methanol fuel cells. In this work, cobalt single atoms are introduced to enhance the electrocatalytic performance of N-doped carbon supported Pt (N-C/Pt) for the methanol oxidation reaction. The cobalt single atoms are believed to play a critical role in accelerating the prompt oxidation of CO to CO2 and minimizing the CO blocking of the adjacent Pt active sites. Benefitting from the synergistic effects among the Co single atoms, the Pt nanoparticles, and the N-doped carbon support, the Co-modified N-C/Pt (Co-N-C/Pt) electrocatalyst simultaneously delivers impressive electrocatalytic activity and durability with lower onset potential and superb CO poisoning resistance as compared to the N-C/Pt and the commercial Pt/C electrocatalysts.

20.
Small ; 18(8): e2104296, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34873861

RESUMO

The investigation of carbonaceous-based anode materials will promote the fast application of low-cost potassium-ion batteries (PIBs). Here a nitrogen and oxygen co-doped yolk-shell carbon sphere (NO-YS-CS) is constructed as anode material for K-ion storage. The novel architecture, featuring with developed porous structure and high surface specific area, is beneficial to achieving excellent electrochemical kinetics behavior and great electrode stability from buffering the large volume expansion. Furthermore, the N/O heteroatoms co-doping can not only boost the adsorption and intercalation ability of K-ion but also increase the electron transfer capability. It is also demonstrated by experimental results and DFT calculations that K-ion insertion/extraction proceeds through both intercalation and surface capacitive adsorption mechanisms. As expected, the NO-YS-CS electrodes show high initial charge capacity of 473.7 mAh g-1 at 20 mA g-1 , ultralong cycling life over 2500 cycles with the retention of 85.8% at 500 mA g-1 , and superior rate performance (183.3 mAh g-1 at 1.0 A g-1 ). The K-ion full cell, with a high energy density of 271.4 Wh kg-1 and an excellent cyclic stability over 500 cycles, is successfully fabricated with K2 Fe[Fe(CN)6 ] cathode. This work will provide new insight on the synthesis and mechanism understanding of high-performance hard carbon anode for PIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA