Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414959

RESUMO

The N7-methylguanosine (m7G) methyltransferase Mettl1 has been recently implicated in cardiac repair and fibrosis. In this study we investigated the role of Mettl1 in mouse cardiomyocytes injury and the underlying mechanisms. Cardiac ischemia/reperfusion (I/R) I/R model was established in mice by ligation of the left anterior descending coronary artery (LAD) for 45 min followed by reperfusion for 24 h. We showed the mRNA and protein levels of Mettl1 were significantly upregulated in mouse I/R hearts and H2O2-treated neonatal mouse cardiomyocytes (NMCMs). Mettl1 knockdown markedly ameliorated cardiac I/R injury, evidenced by decreased infarct size, apoptosis, and improved cardiac function. Overexpression of Mettl1 triggered cardiomyocytes apoptosis in vivo and in vitro. By performing RNA sequencing combined with m7G methylated RNA sequencing in Mettl1-overexpressing mouse hearts, we revealed that Mettl1 catalyzed m7G modification of the deubiquitinase cylindromatosis (CYLD) mRNA to increase the expression of CYLD, which enhanced the stability of P53 via abrogating its ubiquitination degradation. Vice versa, P53 served as a transcriptional factor to positively regulate Mettl1 expression during I/R injury. Knockdown of CYLD mitigated cardiomyocytes apoptosis induced by Mettl1 overexpression or oxidative stress. From the available drug-targets databases and literature, we identified 4 small molecule inhibitors of m7G modification. Sinefungin, one of the Mettl1 inhibitors exerted profound protection against cardiac I/R injury in vivo and in vitro. Collectively, this study has identified Mettl1 as a key regulator of cardiomyocyte apoptosis, and targeting the Mettl1-CYLD-P53 positive feedback circuit may represent a novel therapeutic avenue for alleviating cardiac I/R injury.

2.
Adv Sci (Weinh) ; 11(29): e2308769, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810124

RESUMO

Cardiac hypertrophy is a key factor driving heart failure (HF), yet its pathogenesis remains incompletely elucidated. Mettl1-catalyzed RNA N7-methylguanosine (m7G) modification has been implicated in ischemic cardiac injury and fibrosis. This study aims to elucidate the role of Mettl1 and the mechanism underlying non-ischemic cardiac hypertrophy and HF. It is found that Mettl1 is upregulated in human failing hearts and hypertrophic murine hearts following transverse aortic constriction (TAC) and Angiotensin II (Ang II) infusion. YY1 acts as a transcriptional factor for Mettl1 during cardiac hypertrophy. Mettl1 knockout alleviates cardiac hypertrophy and dysfunction upon pressure overload from TAC or Ang II stimulation. Conversely, cardiac-specific overexpression of Mettl1 results in cardiac remodeling. Mechanically, Mettl1 increases SRSF9 expression by inducing m7G modification of SRSF9 mRNA, facilitating alternative splicing and stabilization of NFATc4, thereby promoting cardiac hypertrophy. Moreover, the knockdown of SRSF9 protects against TAC- or Mettl1-induced cardiac hypertrophic phenotypes in vivo and in vitro. The study identifies Mettl1 as a crucial regulator of cardiac hypertrophy, providing a novel therapeutic target for HF.


Assuntos
Cardiomegalia , Modelos Animais de Doenças , Animais , Humanos , Masculino , Camundongos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética
3.
Redox Biol ; 72: 103145, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583415

RESUMO

Ferroptosis is a nonapoptotic form of regulated cell death that has been reported to play a central role in cardiac ischemia‒reperfusion (I/R) injury. N-acetyltransferase 10 (NAT10) contributes to cardiomyocyte apoptosis by functioning as an RNA ac4c acetyltransferase, but its role in cardiomyocyte ferroptosis during I/R injury has not been determined. This study aimed to elucidate the role of NAT10 in cardiac ferroptosis as well as the underlying mechanism. The mRNA and protein levels of NAT10 were increased in mouse hearts after I/R and in cardiomyocytes that were exposed to hypoxia/reoxygenation. P53 acted as an endogenous activator of NAT10 during I/R in a transcription-dependent manner. Cardiac overexpression of NAT10 caused cardiomyocyte ferroptosis to exacerbate I/R injury, while cardiomyocyte-specific knockout of NAT10 or pharmacological inhibition of NAT10 with Remodelin had the opposite effects. The inhibition of cardiomyocyte ferroptosis by Fer-1 exerted superior cardioprotective effects against the NAT10-induced exacerbation of post-I/R cardiac damage than the inhibition of apoptosis by emricasan. Mechanistically, NAT10 induced the ac4C modification of Mybbp1a, increasing its stability, which in turn activated p53 and subsequently repressed the transcription of the anti-ferroptotic gene SLC7A11. Moreover, knockdown of Mybbp1a partially abolished the detrimental effects of NAT10 overexpression on cardiomyocyte ferroptosis and cardiac I/R injury. Collectively, our study revealed that p53 and NAT10 interdependently cooperate to form a positive feedback loop that promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury, suggesting that targeting the NAT10/Mybbp1a/p53 axis may be a novel approach for treating cardiac I/R.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Acetiltransferases/metabolismo , Acetiltransferases/genética , Apoptose , Modelos Animais de Doenças , Retroalimentação Fisiológica , Ferroptose/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Sci China Life Sci ; 66(12): 2786-2804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37450238

RESUMO

Ischemic heart failure (HF) remains a leading cause of morbidity and mortality. Maintaining homeostasis of cardiac function and preventing cardiac remodeling deterioration are critical to halting HF progression. Methyltransferase-like protein 13 (Mettl13) has been shown to regulate protein translation efficiency by acting as a protein lysine methyltransferase, but its role in cardiac pathology remains unexplored. This study aims to characterize the roles and mechanisms of Mettl13 in cardiac contractile function and HF. We found that Mettl13 was downregulated in the failing hearts of mice post-myocardial infarction (MI) and in a cellular model of oxidative stress. Cardiomyocyte-specific overexpression of Mettl13 mediated by AAV9-Mettl13 attenuated cardiac contractile dysfunction and fibrosis in response to MI, while silencing of Mettl13 impaired cardiac function in normal mice. Moreover, Mettl13 overexpression abrogated the reduction in cell shortening, Ca2+ transient amplitude and SERCA2a protein levels in the cardiomyocytes of adult mice with MI. Conversely, knockdown of Mettl13 impaired the contractility of cardiomyocytes, and decreased Ca2+ transient amplitude and SERCA2a protein expression in vivo and in vitro. Mechanistically, Mettl13 impaired the stability of c-Cbl by inducing lysine methylation of c-Cbl, which in turn inhibited ubiquitination-dependent degradation of SERCA2a. Furthermore, the inhibitory effects of knocking down Mettl13 on SERCA2a protein expression and Ca2+ transients were partially rescued by silencing c-Cbl in H2O2-treated cardiomyocytes. In conclusion, our study uncovers a novel mechanism that involves the Mettl13/c-Cbl/SERCA2a axis in regulating cardiac contractile function and remodeling, and identifies Mettl13 as a novel therapeutic target for ischemic HF.


Assuntos
Insuficiência Cardíaca , Peróxido de Hidrogênio , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Ubiquitinação , Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA