RESUMO
Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:ß-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galß1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.
Assuntos
Escherichia coli/fisiologia , Imunoglobulina M/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Plasmodium/fisiologia , Polissacarídeos/imunologia , Adulto , Animais , Anopheles/parasitologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Autoantígenos/imunologia , Linhagem Celular Tumoral , Criança , Escherichia coli/classificação , Escherichia coli/imunologia , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Humanos , Imunoglobulina M/sangue , Malária Falciparum/microbiologia , Malária Falciparum/parasitologia , Camundongos , Plasmodium/classificação , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Esporozoítos/imunologia , Receptor Toll-Like 9/agonistasRESUMO
Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.
Assuntos
Linfócitos B/imunologia , Proteínas Sanguíneas/metabolismo , Inflamação/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/metabolismo , Criança , Pré-Escolar , Resistência à Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Receptores Fc/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Adulto JovemRESUMO
Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.
Assuntos
Doenças Inflamatórias Intestinais , Hanseníase , Humanos , Criança , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Malaui , Mali , Hanseníase/genética , Proteínas de Transporte de Nucleosídeos/genéticaRESUMO
Infection of erythrocytes with Plasmodium species induces clinical malaria. Parasite-specific CD4(+) T cells correlate with lower parasite burdens and severity of human malaria and are needed to control blood-stage infection in mice. However, the characteristics of CD4(+) T cells that determine protection or parasite persistence remain unknown. Here we show that infection of humans with Plasmodium falciparum resulted in higher expression of the inhibitory receptor PD-1 associated with T cell dysfunction. In vivo blockade of the PD-1 ligand PD-L1 and the inhibitory receptor LAG-3 restored CD4(+) T cell function, amplified the number of follicular helper T cells and germinal-center B cells and plasmablasts, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, and proper function can be restored by inhibitory therapies to enhance parasite control.
Assuntos
Antígenos CD/efeitos dos fármacos , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD4-Positivos/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Doença Aguda , Animais , Antígenos CD/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/parasitologia , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Criança , Pré-Escolar , Doença Crônica , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Centro Germinativo/parasitologia , Humanos , Malária Falciparum/imunologia , Mali , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/imunologia , Estados Unidos , Regulação para Cima/efeitos dos fármacos , Proteína do Gene 3 de Ativação de LinfócitosRESUMO
Host immunity has been suggested to clear drug-resistant parasites in malaria-endemic settings. However, the immunogenetic mechanisms involved in parasite clearance are poorly understood. Characterizing the host's immunity and genes involved in controlling the parasitic infection can inform the development of blood-stage malaria vaccines. This study investigates host regulatory cytokines and immunogenomic factors associated with the clearance of Plasmodium falciparum carrying a chloroquine resistance genotype. Biological samples from participants of previous drug efficacy trials conducted in two Malian localities were retrieved. The P. falciparum chloroquine resistance transporter (Pfcrt) gene was genotyped using parasite DNA. Children carrying parasites with the mutant allele (Pfcrt-76T) were classified based on their ability to clear their parasites. The levels of the different cytokines were measured in serum. The polymorphisms of specific human genes involved in malaria susceptibility were genotyped using human DNA. The prevalence of the Pfcrt-76T was significantly higher in Kolle than in Bandiagara (81.6 % vs 38.6 %, p < 10-6). The prevalence of children who cleared their mutant parasites was significantly higher in Bandiagara than in Kolle (82.2 % vs 67.4 %, p < 0.05). The genotyping of host genes revealed that IFN-γ -874 T and TNF-α -308A alleles were positively associated with parasite clearance. Cytokine profiling revealed that IFN-γ level was positively associated with parasite clearance (p = 0.04). This study highlights the role of host's immunity and immunogenetic factors to clear resistant parasites, suggesting further characterization of these polymorphisms may help to develop novel approaches to antiparasitic treatment strategies.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Criança , Antimaláricos/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Cloroquina/farmacologia , Malária Falciparum/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/uso terapêutico , Malária/tratamento farmacológicoRESUMO
In two previously described donors, the extracellular domain of LAIR1, a collagen-binding inhibitory receptor encoded on chromosome 19 (ref. 1), was inserted between the V and DJ segments of an antibody. This insertion generated, through somatic mutations, broadly reactive antibodies against RIFINs, a type of variant antigen expressed on the surface of Plasmodium falciparum-infected erythrocytes. To investigate how frequently such antibodies are produced in response to malaria infection, we screened plasma from two large cohorts of individuals living in malaria-endemic regions. Here we report that 5-10% of malaria-exposed individuals, but none of the European blood donors tested, have high levels of LAIR1-containing antibodies that dominate the response to infected erythrocytes without conferring enhanced protection against febrile malaria. By analysing the antibody-producing B cell clones at the protein, cDNA and gDNA levels, we characterized additional LAIR1 insertions between the V and DJ segments and discovered a second insertion modality whereby the LAIR1 exon encoding the extracellular domain and flanking intronic sequences are inserted into the switch region. By exon shuffling, this mechanism leads to the production of bispecific antibodies in which the LAIR1 domain is precisely positioned at the elbow between the VH and CH1 domains. Additionally, in one donor the genomic DNA encoding the VH and CH1 domains was deleted, leading to the production of a camel-like LAIR1-containing antibody. Sequencing of the switch regions of memory B cells from European blood donors revealed frequent templated inserts originating from transcribed genes that, in rare cases, comprised exons with orientations and frames compatible with expression. These results reveal different modalities of LAIR1 insertion that lead to public and dominant antibodies against infected erythrocytes and suggest that insertion of templated DNA represents an additional mechanism of antibody diversification that can be selected in the immune response against pathogens and exploited for B cell engineering.
Assuntos
Anticorpos Antiprotozoários/química , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Doadores de Sangue , Malária/imunologia , Mutagênese Insercional , Plasmodium falciparum/imunologia , Receptores Imunológicos/genética , Anticorpos Antiprotozoários/genética , Antígenos de Protozoários/metabolismo , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Europa (Continente) , Feminino , Genes de Cadeia Pesada de Imunoglobulina/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região de Troca de Imunoglobulinas/genética , Memória Imunológica , Íntrons/genética , Malária/epidemiologia , Malária/parasitologia , Masculino , Plasmodium falciparum/metabolismo , Domínios Proteicos , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Moldes Genéticos , Éxons VDJ/genéticaRESUMO
Circumsporozoite protein (CSP) coats the Plasmodium falciparum sporozoite surface and is a major malaria subunit vaccine target. We measured epitope-specific reactivity to field-derived CSP haplotypes in serum samples from Malian adults and children on a custom peptide microarray. Compared to children, adults showed greater antibody responses and responses to more variants in regions proximal to and within the central repeat region. Children acquired short-lived immunity to an epitope proximal to the central repeat region but not to the central repeat region itself. This approach has the potential to differentiate immunodominant from protective epitope-specific responses when combined with longitudinal infection data.
Assuntos
Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos , Vacinas Antimaláricas , Malária Falciparum , Adulto , Criança , Epitopos , Humanos , Vacinas Antimaláricas/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mali , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinas de Subunidades Antigênicas/imunologiaRESUMO
BACKGROUND: Artemether-lumefantrine is a highly effective artemisinin-based combination therapy that was adopted in Mali as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study was designed to measure the efficacy of artemether-lumefantrine and to assess the selection of the P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multi-drug resistance 1 (pfmdr1) genotypes that have been associated with drug resistance. METHODS: A 28-day follow-up efficacy trial of artemether-lumefantrine was conducted in patients aged 6 months and older suffering from uncomplicated falciparum malaria in four different Malian areas during the 2009 malaria transmission season. The polymorphic genetic markers MSP2, MSP1, and Ca1 were used to distinguish between recrudescence and reinfection. Reinfection and recrudescence were then grouped as recurrent infections and analyzed together by PCR-restriction fragment length polymorphism (RFLP) to identify candidate markers for artemether-lumefantrine tolerance in the P. falciparum chloroquine resistance transporter (pfcrt) gene and the P. falciparum multi-drug resistance 1 (pfmdr1) gene. RESULTS: Clinical outcomes in 326 patients (96.7%) were analyzed and the 28-day uncorrected adequate clinical and parasitological response (ACPR) rate was 73.9%. The total PCR-corrected 28-day ACPR was 97.2%. The pfcrt 76T and pfmdr1 86Y population prevalence decreased from 49.3% and 11.0% at baseline (n = 337) to 38.8% and 0% in patients with recurrent infection (n = 85); p = 0.001), respectively. CONCLUSION: Parasite populations exposed to artemether-lumefantrine in this study were selected toward chloroquine-sensitivity and showed a promising trend that may warrant future targeted reintroduction of chloroquine or/and amodiaquine.
Assuntos
Combinação Arteméter e Lumefantrina/administração & dosagem , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Alelos , Combinação Arteméter e Lumefantrina/efeitos adversos , Artemisininas/administração & dosagem , Artemisininas/efeitos adversos , Criança , Pré-Escolar , Cloroquina/administração & dosagem , Cloroquina/efeitos adversos , Resistência a Medicamentos/genética , Feminino , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidadeRESUMO
The circulation of Zika virus (ZIKV) in Mali has not been clearly characterized. Therefore, we conducted a serologic survey of 793 asymptomatic volunteers >15 years of age (2016), and 637 blood donors (2013) to assess the seroprevalence of ZIKV infection in 2 ecoclimatic regions of Mali, tropical savannah and warm semiarid region, using ELISA and seroneutralization assays. The overall seroprevalence was ≈12% and increased with age, with no statistical difference between male and female participants. In the warm semiarid study sites we detected immunological markers of an outbreak that occurred in the late 1990s in 18% (95% CI 13%-23%) of participants. In tropical savannah sites, we estimated a low rate of endemic transmission, with 2.5% (95% CI 2.0%-3.1%) of population infected by ZIKV annually. These data demonstrate the circulation of ZIKV in Mali and provide evidence of a previously unidentified outbreak that occurred in the late 1990s.
Assuntos
Infecção por Zika virus , Zika virus , Doadores de Sangue , Feminino , Humanos , Masculino , Mali/epidemiologia , Estudos Soroepidemiológicos , Infecção por Zika virus/epidemiologiaRESUMO
BACKGROUND: The accurate and rapid identification of mosquito blood meals is critical to study the interactions between vectors and vertebrate hosts and, subsequently, to develop vector control strategies. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has been shown to be a reliable and effective tool for identifying single blood meals from mosquitoes. METHODS: In this study, we developed MALDI-TOF MS profiling protocols to identify Anopheles gambiae Giles, Anopheles coluzzii and Aedes albopictus mosquitoes' mixed blood meals and the last of successive blood meals. The mosquitoes were either successively artificially fed with distinct host bloods or engorged with mixed bloods from distinct vertebrate hosts, such as humans, sheep and dogs. RESULTS: Blind test analyses revealed a correct identification of mixed blood meals from mosquitoes using MALDI-TOF MS profiling. The 353 MS spectra from mixed blood meals were identified using log score values >1.8. All MS spectra (n = 244) obtained from mosquitoes' successive blood meals were reproducible and specific to the last blood meal, suggesting that the previous blood meals do not have an impact on the identification of the last one. CONCLUSION: MALDI-TOF MS profiling approach appears to be an effective and robust technique to identify the last and mixed blood meals during medical entomological surveys.
Assuntos
Aedes/fisiologia , Anopheles/fisiologia , Entomologia/métodos , Mosquitos Vetores/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aedes/química , Animais , Anopheles/química , Análise Química do Sangue , Dieta , Cães , Comportamento Alimentar , Humanos , Mosquitos Vetores/química , Ovinos , Especificidade da EspécieRESUMO
A highly effective vaccine would be a valuable weapon in the drive toward malaria elimination. No such vaccine currently exists, and only a handful of the hundreds of potential candidates in the parasite genome have been evaluated. In this study, we systematically evaluated 29 antigens likely to be involved in erythrocyte invasion, an essential developmental stage during which the malaria parasite is vulnerable to antibody-mediated inhibition. Testing antigens alone and in combination identified several strain-transcending targets that had synergistic combinatorial effects in vitro, while studies in an endemic population revealed that combinations of the same antigens were associated with protection from febrile malaria. Video microscopy established that the most effective combinations targeted multiple discrete stages of invasion, suggesting a mechanistic explanation for synergy. Overall, this study both identifies specific antigen combinations for high-priority clinical testing and establishes a generalizable approach that is more likely to produce effective vaccines.
Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Linhagem Celular , Eritrócitos/imunologia , Eritrócitos/parasitologia , Células HEK293 , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Estudos Prospectivos , Proteínas de Protozoários/imunologiaRESUMO
Many chronic infections, including malaria and HIV, are associated with a large expansion of CD21-CD27- 'atypical' memory B cells (MBCs) that exhibit reduced B cell receptor (BCR) signaling and effector functions. Little is known about the conditions or transcriptional regulators driving atypical MBC differentiation. Here we show that atypical MBCs in malaria-exposed individuals highly express the transcription factor T-bet, and that T-bet expression correlates inversely with BCR signaling and skews toward IgG3 class switching. Moreover, a longitudinal analysis of a subset of children suggested a correlation between the incidence of febrile malaria and the expansion of T-bethi B cells. The Th1-cytokine containing supernatants of malaria-stimulated PBMCs plus BCR cross linking induced T-bet expression in naïve B cells that was abrogated by neutralizing IFN-γ or blocking the IFN-γ receptor on B cells. Accordingly, recombinant IFN-γ plus BCR cross-linking drove T-bet expression in peripheral and tonsillar B cells. Consistent with this, Th1-polarized Tfh (Tfh-1) cells more efficiently induced T-bet expression in naïve B cells. These data provide new insight into the mechanisms underlying atypical MBC differentiation.
Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Memória Imunológica/imunologia , Interferon gama/biossíntese , Malária/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Proteínas Fetais/metabolismo , Humanos , Lactente , Malária/metabolismo , Masculino , Receptores de Antígenos de Linfócitos B/metabolismo , Proteínas com Domínio T/metabolismo , Adulto JovemRESUMO
BACKGROUND: Immunity that limits malarial disease is acquired over time, but adults living in endemic areas continue to become infected and can require treatment for clinical illness. Gamma delta (γδ) T cells, particularly the Vδ2+ subset, have been associated with development of clinical malaria in children. In this study, the dynamics of total γδ T cells, Vδ2+ and Vδ2- T cells were measured during a malaria transmission season in Malian adults. METHODS: This study explored γδ T cell dynamics and Plasmodium falciparum infection outcomes over the course of the malaria transmission season in Malian adults enrolled in the placebo arm of a double-blind randomized vaccine trial. All volunteers were treated with anti-malarial drugs prior to the start of the transmission season and blood smears were assessed for P. falciparum infection every 2 weeks from July 2014 to January 2015. The study participants were stratified as either asymptomatic infections or clinical malaria cases. Vδ2+ and Vδ2- γδ T cell frequencies and activation (as measured by CD38 expression) were measured in all study participants at baseline and then every 2 months using a whole blood flow cytometry assay. RESULTS: Forty of the forty-three subjects became infected with P. falciparum and, of those, 21 individuals were diagnosed with clinical malaria at least once during the season. The γδ T cell percentage and activation increased over the duration of the transmission season. Both the Vδ2+ and Vδ2- γδ T cells were activated by P. falciparum infection. CONCLUSION: γδ T cells increased during a malaria transmission season and this expansion was noted in both the Vδ2+ and Vδ2- γδ T cells. However, neither expansion or activation of either γδ T cell subsets discriminated study participants that had asymptomatic infections from those that had clinical malaria cases.
Assuntos
Linfócitos Intraepiteliais/imunologia , Malária Falciparum/imunologia , Malária Falciparum/patologia , Plasmodium falciparum/imunologia , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Células Sanguíneas , Feminino , Humanos , Estudos Longitudinais , Masculino , Mali , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto JovemRESUMO
BACKGROUND: Anti-malarial treatments effectiveness remains a critical challenge for control programmes. However, when drug efficacy is established, the dose is calculated based on a predefined weight according to the patient age. Based on the hypothesis that the standard assumption of weight according to the age when administering the drug could lead to a therapeutic failure potentially due to under-dosing (in the case of overweight) or over-dosing (in case of underweight). In this study, the relationship between weight status and malaria drug efficacy in clearing current Plasmodium falciparum infection and preventing reinfection after treatment was investigated. METHODS: Data were drown from a clinical trial conducted previously to investigate malaria drug efficacy in 749 children from Mali (2002-2004). Participants were treated either with artesunate + amodiaquine (AS + AQ, n1 = 250), artesunate + sulfadoxine-pyrimethamine (AS + SP, n2 = 248) or artesunate (AS, n3 = 251) and followed for 28 days after treatment. The World Health Organization (WHO) z-score was used to define weight status. A Chi square test was used to compare outcomes according to drugs, weight status and the dynamic of ALAT, ASAT, creatinine and haemoglobin level. Logistic regression models were developed to determine the effect of baseline parameters (weight status, aspartate transaminase, alanine aminotransferase, creatinine and haemoglobin level) on drug efficacy as per WHO criteria. RESULTS: Without molecular correction, in AS + AQ arm, the rate of adequate clinical and parasitological response (ACPR) was higher in the group of underweight children 94.74% compared to children with normal and overweight (91.24% and 80.43% respectively, p = 0.03). After PCR correction, treatment efficacy was similar in the three groups of patients and was above 98% (p = 0.4). Overweight was observed to have no impact on recrudescence. However, it was associated with an increased risk of new infections in the (AS + AQ) arm (OR = 0.21, 95% CI [0.06; 0.86], p = 0.03). CONCLUSIONS: The findings suggest that weight deficiency has no deleterious effect on anti-malarial drug efficacy. An increase in the rate of reinfection in overweight children treated by AS + AQ should be further explored in larger studies.
Assuntos
Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Peso Corporal , Malária Falciparum/tratamento farmacológico , Adolescente , Amodiaquina/administração & dosagem , Amodiaquina/farmacologia , Artesunato/administração & dosagem , Artesunato/farmacologia , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mali , Sulfadoxina/administração & dosagem , Sulfadoxina/farmacologia , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND: A malaria vaccine based on Plasmodium falciparum apical membrane antigen 1 (AMA1) elicited strain specific efficacy in Malian children that waned in the second season after vaccination despite sustained AMA1 antibody titers. With the goal of identifying a humoral correlate of vaccine-induced protection, pre- and post-vaccination sera from children vaccinated with the AMA1 vaccine and from a control group that received a rabies vaccine were tested for AMA1-specific immunoglobulin G (IgG) subclasses (IgG1, IgG2, IgG3, and IgG4) and for antibody avidity. METHODS: Samples from a previously completed Phase 2 AMA1 vaccine trial in children residing in Mali, West Africa were used to determine AMA1-specific IgG subclass antibody titers and avidity by ELISA. Cox proportional hazards models were used to assess correlation between IgG subclass antibody titers and risk of time to first or only clinical malaria episode and risk of multiple episodes. Asexual P. falciparum parasite density measured for each child as area under the curve were used to assess correlation between IgG subclass antibody titers and parasite burden. RESULTS: AMA1 vaccination did not elicit a change in antibody avidity; however, AMA1 vaccinees had a robust IgG subclass response that persisted over the malaria transmission season. AMA1-specific IgG subclass responses were not associated with decreased risk of subsequent clinical malaria. For the AMA1 vaccine group, IgG3 levels at study day 90 correlated with high parasite burden during days 90-240. In the control group, AMA1-specific IgG subclass rise and persistence over the malaria season was modest and correlated with age. In the control group, titers of several IgG subclasses at days 90 and 240 correlated with parasite burden over the first 90 study days, and IgG3 at day 240 correlated with parasite burden during days 90-240. CONCLUSIONS: Neither IgG subclass nor avidity was associated with the modest, strain-specific efficacy elicited by this blood stage malaria vaccine. Although a correlate of protection was not identified, correlations between subclass titers and age, and correlations between IgG subclass titers and parasite burden, defined by area under the curve parasitaemia levels, were observed, which expand knowledge about IgG subclass responses. IgG3, known to have the shortest half-life of the IgG subclasses, might be the most temporally relevant indicator of ongoing malaria exposure when examining antibody responses to AMA1.
Assuntos
Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/administração & dosagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mali , Proteínas de Membrana/administração & dosagem , Proteínas de Protozoários/administração & dosagemRESUMO
BACKGROUND: Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS: A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS: Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS: Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.
Assuntos
Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/imunologia , Adulto , Criança , Pré-Escolar , Sequência Conservada , Humanos , Lactente , Pessoa de Meia-Idade , Estrutura Terciária de Proteína , Adulto JovemRESUMO
BACKGROUND: In the context of environmentally influenced communicable diseases, proximity to environmental sources results in spatial heterogeneity of risk, which is sometimes difficult to measure in the field. Most prevention trials use randomization to achieve comparability between groups, thus failing to account for heterogeneity. This study aimed to determine under what conditions spatial heterogeneity biases the results of randomized prevention trials, and to compare different approaches to modeling this heterogeneity. METHODS: Using the example of a malaria prevention trial, simulations were performed to quantify the impact of spatial heterogeneity and to compare different models. Simulated scenarios combined variation in baseline risk, a continuous protective factor (age), a non-related factor (sex), and a binary protective factor (preventive treatment). Simulated spatial heterogeneity scenarios combined variation in breeding site density and effect, location, and population density. The performances of the following five statistical models were assessed: a non-spatial Cox Proportional Hazard (Cox-PH) model and four models accounting for spatial heterogeneity-i.e., a Data-Generating Model, a Generalized Additive Model (GAM), and two Stochastic Partial Differential Equation (SPDE) models, one modeling survival time and the other the number of events. Using a Bayesian approach, we estimated the SPDE models with an Integrated Nested Laplace Approximation algorithm. For each factor (age, sex, treatment), model performances were assessed by quantifying parameter estimation biases, mean square errors, confidence interval coverage rates (CRs), and significance rates. The four models were applied to data from a malaria transmission blocking vaccine candidate. RESULTS: The level of baseline risk did not affect our estimates. However, with a high breeding site density and a strong breeding site effect, the Cox-PH and GAM models underestimated the age and treatment effects (but not the sex effect) with a low CR. When population density was low, the Cox-SPDE model slightly overestimated the effect of related factors (age, treatment). The two SPDE models corrected the impact of spatial heterogeneity, thus providing the best estimates. CONCLUSION: Our results show that when spatial heterogeneity is important but not measured, randomization alone cannot achieve comparability between groups. In such cases, prevention trials should model spatial heterogeneity with an adapted method. TRIAL REGISTRATION: The dataset used for the application example was extracted from Vaccine Trial #NCT02334462 ( ClinicalTrials.gov registry).
Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/transmissão , Exposição Ambiental , Modelos Estatísticos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Projetos de Pesquisa , Humanos , Malária/prevenção & controle , Malária/transmissão , Fatores de Risco , Fatores SexuaisRESUMO
Whole-sporozoite vaccines confer sterilizing immunity to malaria-naive individuals by unknown mechanisms. In the first PfSPZ Vaccine trial ever in a malaria-endemic population, Vδ2 γδ T cells were significantly elevated and Vγ9/Vδ2 transcripts ranked as the most upregulated in vaccinees who were protected from Plasmodium falciparum infection. In a mouse model, absence of γδ T cells during vaccination impaired protective CD8 T cell responses and ablated sterile protection. γδ T cells were not required for circumsporozoite protein-specific Ab responses, and γδ T cell depletion before infectious challenge did not ablate protection. γδ T cells alone were insufficient to induce protection and required the presence of CD8α+ dendritic cells. In the absence of γδ T cells, CD8α+ dendritic cells did not accumulate in the livers of vaccinated mice. Altogether, our results show that γδ T cells were essential for the induction of sterile immunity during whole-organism vaccination.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium falciparum/fisiologia , Esporozoítos/imunologia , Linfócitos T/imunologia , Adulto , Animais , Anticorpos Antiprotozoários/sangue , Antígenos CD8/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Seguimentos , Humanos , Imunidade , Fígado/patologia , Malária/prevenção & controle , Mali , Camundongos , Fragmentos de Peptídeos/imunologia , Proteínas de Protozoários/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , VacinaçãoRESUMO
BACKGROUND: Artemether-lumefantrine (AL) and artesunate-amodiaquine are first-line treatment for uncomplicated malaria in many endemic countries, including Mali. Dihydroartemisinin-piperaquine (DHA-PQ) is also an alternative first-line artemisinin-based combination therapy, but only few data are available on DHA-PQ efficacy in sub-Saharan Africa. The main aim of this study was to compare clinical efficacy of DHA-PQ versus AL, using the World Health Organization (WHO) 42-day in vivo protocol. METHODS: The efficacy of three-dose regimens of DHA-PQ was compared to AL combination in a randomized, comparative open label trial using the WHO 42-day follow-up protocol from 2013 to 2015 in Doneguebougou and Torodo, Mali. The primary endpoint was to access the PCR-corrected Adequate Clinical and Parasitological Responses at day 28. RESULTS: A total of 317 uncomplicated malaria patients were enrolled, with 159 in DHA-PQ arm and 158 in AL arm. The parasite positivity rate decreased from 68.4% (95% CI 60.5-75.5) on day 1 to 3.8% (95% CI 1.4-8.1) on day 2 for DHA-PQ and 79.8% (95% CI 72.3-85.7) on day 1 to 9.5% (95% CI 5.4-15.2) on day 2 for AL, (p = 0.04). There was a significant difference in the uncorrected ACPR between DHA-PQ and AL, both at 28-day and 42-day follow-up with 97.4% (95% CI 93.5-99.3) in DHA-PQ vs 84.5% (95% CI 77.8-89.8) in AL (p < 0.001) and 94.2% (95% CI 89.3-97.3) in DHA-PQ vs 73.4% (95% CI 65.7-80.2) in AL, respectively (p < 0.001). After molecular correction, there was no significant difference in ACPRc between DHA-PQ and AL, both at the 28-day and 42-day follow-up with 99.4% (95% CI 96.5-100) in DHA-PQ versus 98.1% (95% CI 94.5-99.6) in AL (p = 0.3) and 99.3% (95% CI 96.5-100) in DHA-PQ vs 97.4% (95% CI 93.5-99.3) in AL (p = 0.2). There was no significant difference between DHA-PQ and AL in QTc prolongation 12.1% vs 7%, respectively (p = 0.4). CONCLUSION: The results showed that dihydroartemisinin-piperaquine and artemether-lumefantrine were clinically efficacious on Plasmodium falciparum parasites in Mali.
Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/prevenção & controle , Quinolinas/uso terapêutico , Adolescente , Adulto , Combinação Arteméter e Lumefantrina , Criança , Pré-Escolar , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Feminino , Fluorenos/uso terapêutico , Humanos , Lactente , Masculino , Mali , Pessoa de Meia-Idade , Plasmodium falciparum/efeitos dos fármacos , Adulto JovemRESUMO
BACKGROUND: Malaria endemic countries need to assess efficacy of anti-malarial treatments on a regular basis. Moreover, resistance to artemisinin that is established across mainland South-East Asia represents today a major threat to global health. Monitoring the efficacy of artemisinin-based combination therapies is of paramount importance to detect as early as possible the emergence of resistance in African countries that toll the highest burden of malaria morbidity and mortality. METHODS: A WHO standard protocol was used to assess efficacy of the combinations artesunate-amodiaquine (AS-AQ Winthrop®), dihydroartemisinin-piperaquine (DHA-PPQ, Eurartesim®) and artemether-lumefantrine (AM-LM, Coartem®) taken under supervision and respecting pharmaceutical recommendations. The study enrolled for each treatment arm 212 children aged 6-59 months living in Maradi (Niger) and suffering with uncomplicated falciparum malaria. The Kaplan-Meier 42-day PCR-adjusted cure rate was the primary outcome. A standardized parasite clearance estimator was used to assess delayed parasite clearance as surrogate maker of suspected artemisinin resistance. RESULTS: No early treatment failures were found in any of the study treatment arms. The day-42 PCR-adjusted cure rate estimates were 99.5, 98.4 and 99.0% in the AS-AQ, DHA-PPQ and AM-LM arms, respectively. The reinfection rate (expressed also as Kaplan-Meier estimates) was higher in the AM-LM arm (32.4%) than in the AS-AQ (13.8%) and the DHA-PPQ arm (24.9%). The parasite clearance rate constant was 0.27, 0.26 and 0.25 per hour for AS-AQ, DHA-PPQ and AM-LM, respectively. CONCLUSIONS: All the three treatments evaluated largely meet WHO criteria (at least 95% efficacy). AS-AQ and AL-LM may continue to be used and DHA-PPQ may be also recommended as first-line treatment for uncomplicated falciparum malaria in Maradi. The parasite clearance rate were consistent with reference values indicating no suspected artemisinin resistance. Nevertheless, the monitoring of anti-malarial drug efficacy should continue. Trial registration details Registry number at ClinicalTrial.gov: NCT01755559.