RESUMO
NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto JovemRESUMO
22q11.2 distal deletion syndrome is distinct from the common 22q11.2 deletion syndrome and caused by microdeletions localized adjacent to the common 22q11 deletion at its telomeric end. Most distal deletions of 22q11 extend from LCR22-4 to an LCR in the range LCR22-5 to LCR22-8. We present three patients with 22q11 distal deletions, of whom two have complex congenital heart malformation, thus broadening the phenotypic spectrum. We compare cardiac malformations reported in 22q11 distal deletion to those reported in the common 22q11 deletion syndrome. We also review the literature for patients with 22q11 distal deletions, and discuss the possible roles of haploinsufficiency of the MAPK1 gene. We find the most frequent features in 22q11 distal deletion to be developmental delay or learning disability, short stature, microcephalus, premature birth with low birth weight, and congenital heart malformation ranging from minor anomalies to complex malformations. Behavioral problems are also seen in a substantial portion of patients. The following dysmorphic features are relatively common: smooth philtrum, abnormally structured ears, cleft palate/bifid uvula, micro-/retrognathia, upslanting palpebral fissures, thin upper lip, and ear tags. Very distal deletions including region LCR22-6 to LCR22-7 encompassing the SMARCB1-gene are associated with an increased risk of malignant rhabdoid tumors.