Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 35(49): 16221-35, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26658872

RESUMO

A hallmark of the nervous system is the presence of precise patterns of connections between different types of neurons. Many mechanisms can be used to establish specificity, including homophilic adhesion and synaptic refinement, but the range of strategies used across the nervous system remains unclear. To broaden the understanding of how neurons find their targets, we studied the developing murine cochlea, where two classes of spiral ganglion neurons (SGNs), type I and type II, navigate together to the sensory epithelium and then diverge to contact inner hair cells (IHCs) or outer hair cells (OHCs), respectively. Neurons with type I and type II morphologies are apparent before birth, suggesting that target selection might be accomplished by excluding type I processes from the OHC region. However, because type I processes appear to overshoot into type II territory postnatally, specificity may also depend on elimination of inappropriate synapses. To resolve these differences, we analyzed the morphology and dynamic behaviors of individual fibers and their branches as they interact with potential partners. We found that SGN processes continue to be segregated anatomically in the postnatal cochlea. Although type I-like fibers branched locally, few branches contacted OHCs, arguing against synaptic elimination. Instead, time-lapse imaging studies suggest a prominent role for retraction, first positioning processes to the appropriate region and then corralling branches during a subsequent period of exuberant growth and refinement. Thus, sequential stages of retraction can help to achieve target specificity, adding to the list of mechanisms available for sculpting neural circuits. SIGNIFICANCE STATEMENT: During development, different types of neurons must form connections with specific synaptic targets, thereby creating the precise wiring diagram necessary for adult function. Although studies have revealed multiple mechanisms for target selection, we still know little about how different strategies are used to produce each circuit's unique pattern of connectivity. Here we combined neurite-tracing and time-lapse imaging to define the events that lead to the simple binary wiring specificity of the cochlea. A better understanding of how the cochlea is innervated will broaden our knowledge of target selection across the nervous system, offer new insights into the developmental origins of deafness, and guide efforts to restore connectivity in the damaged cochlea.


Assuntos
Cóclea/anatomia & histologia , Cóclea/inervação , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Vias Neurais/fisiologia , Gânglio Espiral da Cóclea/citologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Mamíferos , Imageamento Tridimensional , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Cultura de Órgãos , Imagem com Lapso de Tempo
2.
J Neurosci ; 33(8): 3679-91, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426694

RESUMO

Spiral ganglion neurons (SGNs) play a key role in hearing by rapidly and faithfully transmitting signals from the cochlea to the brain. Identification of the transcriptional networks that ensure the proper specification and wiring of SGNs during development will lay the foundation for efforts to rewire a damaged cochlea. Here, we show that the transcription factor Gata3, which is expressed in SGNs throughout their development, is essential for formation of the intricately patterned connections in the cochlea. We generated conditional knock-out mice in which Gata3 is deleted after SGNs are specified. Cochlear wiring is severely disrupted in these animals, with premature extension of neurites that follow highly abnormal trajectories toward their targets, as shown using in vitro neurite outgrowth assays together with time-lapse imaging of whole embryonic cochleae. Expression profiling of mutant neurons revealed a broad shift in gene expression toward a more differentiated state, concomitant with minor changes in SGN identity. Thus, Gata3 appears to serve as an "intermediate regulator" that guides SGNs through differentiation and preserves the auditory fate. As the first auditory-specific regulator of SGN development, Gata3 provides a useful molecular entry point for efforts to engineer SGNs for the restoration of hearing.


Assuntos
Cóclea/embriologia , Cóclea/crescimento & desenvolvimento , Fator de Transcrição GATA3/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cóclea/metabolismo , Feminino , Fator de Transcrição GATA3/deficiência , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética , Neurogênese/fisiologia , Gânglio Espiral da Cóclea/embriologia , Gânglio Espiral da Cóclea/crescimento & desenvolvimento , Gânglio Espiral da Cóclea/metabolismo
3.
Development ; 136(18): 3195-203, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19700623

RESUMO

The enteric nervous system (ENS) develops from neural crest cells (NCCs) that enter the foregut and hindgut to become enteric neural-crest-derived cells (ENCCs). When these cells of neural crest origin fail to colonize the terminal hindgut, this aganglionic region becomes non-functional and results in a condition in humans known as Hirschsprung's disease (HSCR). One of the genes associated with HSCR is endothelin receptor type B (Ednrb). To study the development of colonic aganglionosis we have utilized a novel knockout mouse (Ednrb(flex3/flex3)), in which the expression of a null Ednrb allele and YFP is confined to NCCs. We have identified two primary cellular defects related to defective EDNRB signaling. First, ENCC advance in Ednrb(flex3/flex3) embryos is delayed shortly after NCCs enter the gut. Apart from this early delay, Ednrb(flex3/flex3) ENCCs advance normally until reaching the proximal colon. Second, as Ednrb(flex3/flex3) ENCCs reach the colon at E14.5, they display migratory defects, including altered trajectories and reduced speed, that are not dependent on proliferation or differentiation. We constructed grafts to test the ability of donor ENCCs to invade a recipient piece of aganglionic colon. Our results indicate that the age of the recipient, and not the age or genotype of donor ENCCs, determines whether the colon is invaded. We identify changes in laminin expression that are associated with the failure of ENCCs to invade recipient tissue. Together, our data suggest that a defect in pre-enteric Ednrb(flex3/flex3) NCCs results in delayed colonic arrival, which, due to environment changes in the colon, is sufficient to cause aganglionosis.


Assuntos
Envelhecimento/fisiologia , Colo , Sistema Nervoso Entérico , Meio Ambiente , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais , Colo/embriologia , Colo/inervação , Colo/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Humanos , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Células-Tronco/citologia
4.
Dev Cell ; 56(17): 2516-2535.e8, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34469751

RESUMO

The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.


Assuntos
Diferenciação Celular/genética , Crista Neural/citologia , Neuroglia/metabolismo , Células de Schwann/metabolismo , Análise de Sequência de RNA , Animais , Sequência de Bases/genética , Diferenciação Celular/fisiologia , Camundongos Transgênicos , Neurônios/metabolismo , Análise de Sequência de RNA/métodos
5.
J Anat ; 217(6): 651-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20840354

RESUMO

Within the embryonic lung, intrinsic nerve ganglia, which innervate airway smooth muscle, are required for normal lung development and function. We studied the development of neural crest-derived intrinsic neurons within the embryonic mouse lung by crossing Wnt1-Cre mice with R26R-EYFP reporter mice to generate double transgenic mice that express yellow fluorescent protein (YFP) in all neural crest cells (NCCs) and their derivatives. In addition to utilizing conventional immunohistochemistry on frozen lung sections, the complex organization of lung innervation was visualized in three dimensions by combining the genetic labelling of NCCs with optical projection tomography, a novel imaging technique that is particularly useful for the 3D examination of developing organs within embryos. YFP-positive NCCs migrated into the mouse lung from the oesophagus region at embryonic day 10.5. These cells subsequently accumulated around the bronchi and epithelial tubules of the lung and, as shown by 3D lung reconstructions with optical projection tomography imaging, formed an extensive, branching network in association with the developing airways. YFP-positive cells also colonized lung maintained in organotypic culture, and responded in a chemoattractive manner to the proto-oncogene, rearranged during transfection (RET) ligand, glial-cell-line-derived neurotrophic factor (GDNF), suggesting that the RET signalling pathway is involved in neuronal development within the lung. However, when the lungs of Ret(-/-) and Gfrα1(-/-) embryos, deficient in the RET receptor and GDNF family receptor α 1 (GFRα1) co-receptor respectively, were examined, no major differences in the extent of lung innervation were observed. Our findings demonstrate that intrinsic neurons of the mouse lung are derived from NCCs and that, although implicated in the development of these cells, the role of the RET signalling pathway requires further investigation.


Assuntos
Sistema Nervoso Entérico/embriologia , Pulmão/embriologia , Pulmão/inervação , Crista Neural/citologia , Animais , Diferenciação Celular , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Imuno-Histoquímica , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/análise , Tomografia Óptica
6.
Genesis ; 46(8): 396-400, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18693272

RESUMO

Endothelin receptor B (Ednrb) plays a critical role in the development of melanocytes and neurons and glia of the enteric nervous system. These distinct neural crest-derived cell types express Ednrb and share the property of intercalating into tissues, such as the intestine whose muscle precursor cells also express Ednrb. Such widespread Ednrb expression has been a significant obstacle in establishing precise roles for Ednrb in development. We describe here the production of an Ednrb allele floxed at exon 3 and its use in excising the receptor from mouse neural crest cells by use of Cre-recombinase driven by the Wnt1 promoter. Mice born with neural crest-specific excision of Ednrb possess aganglionic colon, lack trunk pigmentation, and die within 5 weeks due to megacolon. Ednrb receptor expression in these animals is absent only in the neural crest but present in surrounding smooth muscle cells. The absence of Ednrb from crest cells also results in a compensatory upregulation of Ednrb expression in other cells within the gut. We conclude that Ednrb loss only in neural crest cells is sufficient to produce the Hirschsprungs disease phenotype observed with genomic Ednrb mutations.


Assuntos
Marcação de Genes , Crista Neural/metabolismo , Receptor de Endotelina B/metabolismo , Animais , Linhagem da Célula , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Doença de Hirschsprung/metabolismo , Camundongos , Receptor de Endotelina B/genética
7.
Cell Rep ; 22(7): 1666-1680, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444422

RESUMO

During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.


Assuntos
Netrina-1/metabolismo , Neurônios/metabolismo , Rombencéfalo/citologia , Animais , Membrana Basal/metabolismo , Movimento Celular , Nervos Cranianos/metabolismo , Receptor DCC/metabolismo , Cistos Glanglionares/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Sistema Nervoso Periférico/citologia , Ponte/citologia , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Raízes Nervosas Espinhais/metabolismo
8.
J Comp Neurol ; 520(3): 620-32, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21858821

RESUMO

Both vagal and sacral neural crest cells contribute to the enteric nervous system in the hindgut. Because it is difficult to visualize sacral crest cells independently of vagal crest, the nature and extent of the sacral crest contribution to the enteric nervous system are not well established in rodents. To overcome this problem we generated mice in which only the fluorescent protein-labeled sacral crest are present in the terminal colon. We found that sacral crest cells were associated with extrinsic nerve fibers. We investigated the source, time of appearance, and characteristics of the extrinsic nerve fibers found in the aganglionic colon. We observed that the pelvic ganglion neurons contributed a number of extrinsic fibers that travel within the hindgut between circular and longitudinal muscles and within the submucosa and serosa. Sacral crest-derived cells along these fibers diminished in number from fetal to postnatal stages. A small number of sacral crest-derived cells were found between the muscle layers and expressed the neuronal marker Hu. We conclude that sacral crest cells enter the hindgut by advancing on extrinsic fibers and, in aganglionic preparations, they form a small number of neurons at sites normally occupied by myenteric ganglia. We also examined the colons of ganglionated preparations and found sacral crest-derived cells associated with both extrinsic nerve fibers and nascent ganglia. Extrinsic nerve fibers serve as a route of entry for both rodent and avian sacral crest into the hindgut.


Assuntos
Movimento Celular/genética , Colo/metabolismo , Sistema Nervoso Entérico/metabolismo , Crista Neural/metabolismo , Receptor de Endotelina B/biossíntese , Receptor de Endotelina B/deficiência , Sacro/metabolismo , Animais , Movimento Celular/fisiologia , Colo/inervação , Colo/patologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Crista Neural/citologia , Crista Neural/patologia , Sacro/citologia , Sacro/inervação
9.
Diabetes Res Clin Pract ; 87(3): e29-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20053475

RESUMO

Minor alleles of two SNPs in intron 9 of the NRP1 gene, which encodes neuropilin-1, were found to be associated with type 1 diabetes (T1D) in children. Neuropilin-1 peptides were confined to islets in human pancreas. This suggests neuropilins-1 could influence the development of some cases of T1D in children.


Assuntos
Diabetes Mellitus Tipo 1/genética , Ilhotas Pancreáticas/metabolismo , Neuropilina-1/genética , Idade de Início , Alelos , Distribuição de Qui-Quadrado , Criança , Diabetes Mellitus Tipo 1/metabolismo , Imunofluorescência , Predisposição Genética para Doença , Testes Genéticos , Humanos , Neuropilina-1/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Dev Dyn ; 236(1): 84-92, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17039523

RESUMO

Neural crest-derived cells colonize the entire gastrointestinal tract. The migration of these enteric neural crest-derived cells (ENCCs) occurs by their formation of cellular strands that extend into the intestinal mesenchyme. We have studied the behavior of crest cells that underlies the formation and extension of these strands by time-lapse microscopy. ENCCs expressing fluorescent marker molecules were visualized in situ in the embryonic mouse and chick gut. The major contributor to strand extension is from cells located within a region approximately 300 microm behind (rostral to) the most caudal cells in the migratory wavefront. Cells in the region immediately behind the leading cell of the strand either move intermittently in parallel with the leading cell, or advance caudally toward the wavefront over other ENCCs. Another addition to the strands arises from isolated cells located caudal to the wavefront. These cells showed a range of behavior including attachment and separation from the strands. The extending strands converged to form nodes, and then diverged along independent paths to form new strands, a behavior suggestive of attraction and repulsion. This behavior is probably responsible for the unique reticulated arrangement of ganglia in the enteric nervous system. As cells become positioned farther behind the wavefront, they exhibit more restricted movement and varied trajectories. We conclude that ENCCs exhibit different behaviors, depending on their position with respect to the wavefront. These different behaviors suggest a critical role for cell-cell interaction in the migratory process.


Assuntos
Movimento Celular/fisiologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Crista Neural/embriologia , Animais , Diferenciação Celular , Embrião de Galinha , Sistema Nervoso Entérico/fisiologia , Intestinos/embriologia , Intestinos/crescimento & desenvolvimento , Mesoderma/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Crista Neural/citologia , Crista Neural/fisiologia
11.
Dev Biol ; 287(1): 125-33, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16197939

RESUMO

Neural crest cells leave the hindbrain, enter the gut mesenchyme at the pharynx, and migrate as strands of cells to the terminal bowel to form the enteric nervous system. We generated embryos containing fluorescent enteric neural crest-derived cells (ENCCs) by mating Wnt1-Cre mice with Rosa-floxed-YFP mice and investigated ENCC behavior in the intact gut of mouse embryos using time-lapse fluorescent microscopy. With respect to the entire gut, we have found that ENCCs in the cecum and proximal colon behave uniquely. ENCCs migrating caudally through either the ileum, or caudal colon, are gradually advancing populations of strands displaying largely unpredictable local trajectories. However, in the cecum, advancing ENCCs pause for approximately 12 h, and then display an invariable pattern of migration to distinct regions of the cecum and proximal colon. In addition, while most ENCCs migrating through other regions of the gut remain interconnected as strands; ENCCs initially migrating through the cecum and proximal colon fragment from the main population and advance as isolated single cells. These cells aggregate into groups isolated from the main network, and eventually extend strands themselves to reestablish a network in the mid-colon. As the advancing network of ENCCs reaches the terminal bowel, strands of sacral crest cells extend, and intersect with vagal crest to bridge the small space between. We found a relationship between ENCC number, interaction, and migratory behavior by utilizing endogenously isolated strands and by making cuts along the ENCC wavefront. Depending on the number of cells, the ENCCs aggregated, proliferated, and extended strands to advance the wavefront. Our results show that interactions between ENCCs are important for regulating behaviors necessary for their advancement.


Assuntos
Ceco/embriologia , Colo/embriologia , Crista Neural/embriologia , Animais , Movimento Celular/fisiologia , Sistema Nervoso Entérico/embriologia , Genes Reporter , Integrases/genética , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA