Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(52): 18460-5, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25453065

RESUMO

Existing radiocarbon ((14)C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼ 18,000 (14)C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new (14)C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼ 50,000 y B.P. limit of (14)C dating. Some erroneously "young" (14)C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our (14)C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼ 75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼ 10,000 (14)C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets.


Assuntos
Mudança Climática , Florestas , Fósseis , Mastodontes/fisiologia , Alaska , Animais , Regiões Árticas , Humanos
2.
Nat Commun ; 15(1): 2864, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580657

RESUMO

Global climate patterns fundamentally shape the distribution of species and ecosystems. For example, Bergmann's rule predicts that homeothermic animals, including birds and mammals, inhabiting cooler climates are generally larger than close relatives from warmer climates. The modern world, however, lacks the comparative data needed to evaluate such macroecological rules rigorously. Here, we test for Bergmann's rule in Mesozoic dinosaurs and mammaliaforms that radiated within relatively temperate global climate regimes. We develop a phylogenetic model that accounts for biases in the fossil record and allows for variable evolutionary dispersal rates. Our analysis also includes new fossil data from the extreme high-latitude Late Cretaceous Arctic Prince Creek Formation. We find no evidence for Bergmann's rule in Mesozoic dinosaurs or mammaliaforms, the ancestors of extant homeothermic birds and mammals. When our model is applied to thousands of extant dinosaur (bird) and mammal species, we find that body size evolution remains independent of latitude. A modest temperature effect is found in extant, but not in Mesozoic, birds, suggesting that body size evolution in modern birds was influenced by Bergmann's rule during Cenozoic climatic change. Our study provides a general approach for studying macroecological rules, highlighting the fossil record's power to address longstanding ecological principles.


Assuntos
Dinossauros , Animais , Filogenia , Ecossistema , Modelos Biológicos , Tamanho Corporal , Mamíferos , Evolução Biológica
3.
Curr Biol ; 31(16): 3469-3478.e5, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34171301

RESUMO

The unexpected discovery of non-avian dinosaurs from Arctic and Antarctic settings has generated considerable debate about whether they had the capacity to reproduce at high latitudes-especially the larger-bodied, hypothetically migratory taxa. Evidence for dinosaurian polar reproduction remains very rare, particularly for species that lived at the highest paleolatitudes (>75°). Here we report the discovery of perinatal and very young dinosaurs from the highest known paleolatitude for the clade-the Cretaceous Prince Creek Formation (PCF) of northern Alaska. These data demonstrate Arctic reproduction in a diverse assemblage of large- and small-bodied ornithischian and theropod species. In terms of overall diversity, 70% of the known dinosaurian families, as well as avialans (birds), in the PCF are represented by perinatal individuals, the highest percentage for any North American Cretaceous formation. These findings, coupled with prolonged incubation periods, small neonate sizes, and short reproductive windows suggest most, if not all, PCF dinosaurs were nonmigratory year-round Arctic residents. Notably, we reconstruct an annual chronology of reproductive events for the ornithischian dinosaurs using refined paleoenvironmental/plant phenology data and new insights into dinosaur incubation periods. Seasonal resource limitations due to extended periods of winter darkness and freezing temperatures placed severe constraints on dinosaurian reproduction, development, and maintenance, suggesting these taxa showed polar-specific life history strategies, including endothermy.


Assuntos
Dinossauros , Fósseis , Comportamento de Nidação , Animais , Regiões Árticas , Dinossauros/anatomia & histologia , Filogenia , Reprodução
4.
PeerJ ; 8: e8652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266112

RESUMO

Cryptoclidids are a major clade of plesiosauromorph plesiosaurians best known from the Middle-Late Jurassic, but little is known regarding their turnover into the Early Cretaceous. Of the known cryptoclidid genera, most preserve only a limited amount of cranial material and of these Cryptoclidus eurymerus, displays the most complete, but compressed cranium. Thus, the lack of knowledge of the cranial anatomy of this group may hinder the understanding of phylogenetic interrelationships, which are currently predominantly based on postcranial data. Here we present a nearly complete adult cryptoclidid specimen (PMO 224.248) representing a new genus and species Ophthalmothule cryostea gen et sp. nov., from the latest Jurassic to earliest Cretaceous part of the Slottsmøya Member, of central Spitsbergen. The holotype material preserves a complete cranium, partial mandible, complete and articulated cervical, pectoral and anterior to middle dorsal series, along with the pectoral girdle and anterior humeri. High resolution microcomputed tomography reveals new data on the cranial anatomy of this cryptoclidid, including new internal features of the braincase and palate that are observed in other cryptoclidids. A phylogenetic analysis incorporating new characters reveals a novel tree topology for Cryptoclididae and particularly within the subfamily Colymbosaurinae. These results show that at least two cryptoclidid lineages were present in the Boreal Region during the latest Jurassic at middle to high latitudes.

5.
Sci Rep ; 10(1): 1746, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019943

RESUMO

Thalattosaurians are a cosmopolitan clade of secondarily aquatic tetrapods that inhabited low-latitude, nearshore environments during the Triassic. Despite their low taxic diversity, thalattosaurians exhibit remarkable morphological disparity, particularly with respect to rostral and dental morphology. However, a paucity of well-preserved material, especially leading up to their extinction, has hampered efforts to develop a robust picture of their evolutionary trajectories during a time of profound marine ecological change. Here, we describe a new taxon based on an articulated and nearly complete skeleton from Norian sediments of southeastern Alaska, USA. The holotype is the most complete North American thalattosaurian yet described and one of the youngest occurrences of the clade worldwide. We present a new hypothesis of interrelationships for Thalattosauria and investigate potential feeding modes in the Alaskan taxon. An integrated view suggests that the absence of pelagic lifestyles and restricted ecological roles may have contributed to thalattosaurs' eventual extinction.


Assuntos
Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Alaska , Animais , Evolução Biológica , Extinção Biológica
6.
Sci Rep ; 10(1): 16434, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009498

RESUMO

Throughout their evolution, tetrapods have repeatedly colonised a series of ecological niches in marine ecosystems, producing textbook examples of convergent evolution. However, this evolutionary phenomenon has typically been assessed qualitatively and in broad-brush frameworks that imply simplistic macroevolutionary landscapes. We establish a protocol to visualize the density of trait space occupancy and thoroughly test for the existence of macroevolutionary landscapes. We apply this protocol to a new phenotypic dataset describing the morphology of short-necked plesiosaurians, a major component of the Mesozoic marine food webs (ca. 201 to 66 Mya). Plesiosaurians evolved this body plan multiple times during their 135-million-year history, making them an ideal test case for the existence of macroevolutionary landscapes. We find ample evidence for a bimodal craniodental macroevolutionary landscape separating latirostrines from longirostrine taxa, providing the first phylogenetically-explicit quantitative assessment of trophic diversity in extinct marine reptiles. This bimodal pattern was established as early as the Middle Jurassic and was maintained in evolutionary patterns of short-necked plesiosaurians until a Late Cretaceous (Turonian) collapse to a unimodal landscape comprising longirostrine forms with novel morphologies. This study highlights the potential of severe environmental perturbations to profoundly alter the macroevolutionary dynamics of animals occupying the top of food chains.


Assuntos
Répteis/fisiologia , Animais , Evolução Biológica , Ecossistema , Extinção Biológica , Cadeia Alimentar , Fósseis , Filogenia
7.
PLoS One ; 12(1): e0169971, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28121995

RESUMO

In spite of a fossil record spanning over 150 million years, pelvic girdle evolution in Ichthyopterygia is poorly known. Here, we examine pelvic girdle size relationships using quantitative methods and new ophthalmosaurid material from the Slottsmøya Member Lagerstätte of Svalbard, Norway. One of these new specimens, which preserves the most complete ichthyosaur pelvic girdle from the Cretaceous, is described herein as a new taxon, Keilhauia nui gen. et sp. nov. It represents the most complete Berriasian ichthyosaur known and the youngest yet described from the Slottsmøya Member. It is diagnosed on the basis of two autapomorphies from the pelvic girdle, including an ilium that is anteroposteriorly expanded at its dorsal end and an ischiopubis that is shorter or subequal in length to the femur, as well as a unique character combination. The Slottsmøya Member Lagerstätte ichthyosaurs are significant in that they represent a diverse assemblage of ophthalmosaurids that existed immediately preceding and across the Jurassic-Cretaceous boundary. They also exhibit considerable variation in pelvic girdle morphology, and expand the known range in size variation of pelvic girdle elements in the clade.


Assuntos
Dinossauros/classificação , Fósseis/anatomia & histologia , Animais , Organismos Aquáticos/classificação , Evolução Biológica , Tamanho Corporal , Dinossauros/anatomia & histologia , Fêmur/anatomia & histologia , Noruega , Ossos Pélvicos/anatomia & histologia , Filogenia , Terminologia como Assunto
8.
Curr Biol ; 27(11): 1667-1676.e3, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552354

RESUMO

Plesiosaurs were the longest-surviving group of secondarily marine tetrapods, comparable in diversity to today's cetaceans. During their long evolutionary history, which spanned the Jurassic and the Cretaceous (201 to 66 Ma), plesiosaurs repeatedly evolved long- and short-necked body plans [1, 2]. Despite this postcranial plasticity, short-necked plesiosaur clades have traditionally been regarded as being highly constrained to persistent and clearly distinct ecological niches: advanced members of Pliosauridae (ranging from the Middle Jurassic to the early Late Cretaceous) have been characterized as apex predators [2-5], whereas members of the distantly related clade Polycotylidae (middle to Late Cretaceous) were thought to have been fast-swimming piscivores [1, 5-7]. We report a new, highly unusual pliosaurid from the Early Cretaceous of Russia that shows close convergence with the cranial structure of polycotylids: Luskhan itilensis gen. et sp. nov. Using novel cladistic and ecomorphological data, we show that pliosaurids iteratively evolved polycotylid-like cranial morphologies from the Early Jurassic until the Early Cretaceous. This underscores the ecological diversity of derived pliosaurids and reveals a more complex evolutionary history than their iconic representation as gigantic apex predators of Mesozoic marine ecosystems suggests. Collectively, these data demonstrate an even higher degree of morphological plasticity and convergence in the evolution of plesiosaurs than previously thought and suggest the existence of an optimal ecomorphology for short-necked piscivorous plesiosaurs through time and across phylogeny.


Assuntos
Organismos Aquáticos/fisiologia , Dinossauros/fisiologia , Fósseis/anatomia & histologia , Filogenia , Animais , Evolução Biológica , Dinossauros/anatomia & histologia , Ecologia , Extinção Biológica , Pescoço/anatomia & histologia , Federação Russa , Crânio/anatomia & histologia , Especificidade da Espécie
9.
Curr Biol ; 27(24): 3852-3858.e3, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29225027

RESUMO

Sauropterygia, a successful clade of marine reptiles abundant in aquatic ecosystems of the Mesozoic, inhabited nearshore to pelagic habitats over >180 million years of evolutionary history [1]. Aquatic vertebrates experience strong buoyancy forces that allow movement in a three-dimensional environment, resulting in structural convergences such as flippers and fish-like bauplans [2, 3], as well as convergences in the sensory systems. We used computed tomographic scans of 19 sauropterygian species to determine how the transition to pelagic lifestyles influenced the evolution of the endosseous labyrinth, which houses the vestibular sensory organ of balance and orientation [4]. Semicircular canal geometries underwent distinct changes during the transition from nearshore Triassic sauropterygians to the later, pelagic plesiosaurs. Triassic sauropterygians have dorsoventrally compact, anteroposteriorly elongate labyrinths, resembling those of crocodylians. In contrast, plesiosaurs have compact, bulbous labyrinths, sharing some features with those of sea turtles. Differences in relative labyrinth size among sauropterygians correspond to locomotory differences: bottom-walking [5, 6] placodonts have proportionally larger labyrinths than actively swimming taxa (i.e., all other sauropterygians). Furthermore, independent evolutionary origins of short-necked, large-headed "pliosauromorph" body proportions among plesiosaurs coincide with reductions of labyrinth size, paralleling the evolutionary history of cetaceans [7]. Sauropterygian labyrinth evolution is therefore correlated closely with both locomotory style and body proportions, and these changes are consistent with isolated observations made previously in other marine tetrapods. Our study presents the first virtual reconstructions of plesiosaur endosseous labyrinths and the first large-scale, quantitative study detailing the effects of increasingly aquatic lifestyles on labyrinth morphology among marine reptiles.


Assuntos
Evolução Biológica , Orelha Interna/anatomia & histologia , Ecossistema , Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Animais , Répteis/fisiologia , Natação , Tomografia Computadorizada por Raios X
10.
Biol Rev Camb Philos Soc ; 89(1): 1-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23581455

RESUMO

Marine and terrestrial animals show a mosaic of lineage extinctions and diversifications during the Jurassic-Cretaceous transition. However, despite its potential importance in shaping animal evolution, few palaeontological studies have focussed on this interval and the possible climate and biotic drivers of its faunal turnover. In consequence evolutionary patterns in most groups are poorly understood. We use a new, large morphological dataset to examine patterns of lineage diversity and disparity (variety of form) in the marine tetrapod clade Plesiosauria, and compare these patterns with those of other organisms. Although seven plesiosaurian lineages have been hypothesised as crossing the Jurassic-Cretaceous boundary, our most parsimonious topology suggests the number was only three. The robust recovery of a novel group including most Cretaceous plesiosauroids (Xenopsaria, new clade) is instrumental in this result. Substantial plesiosaurian turnover occurred during the Jurassic-Cretaceous boundary interval, including the loss of substantial pliosaurid, and cryptoclidid diversity and disparity, followed by the radiation of Xenopsaria during the Early Cretaceous. Possible physical drivers of this turnover include climatic fluctuations that influenced oceanic productivity and diversity: Late Jurassic climates were characterised by widespread global monsoonal conditions and increased nutrient flux into the opening Atlantic-Tethys, resulting in eutrophication and a highly productive, but taxonomically depauperate, plankton. Latest Jurassic and Early Cretaceous climates were more arid, resulting in oligotrophic ocean conditions and high taxonomic diversity of radiolarians, calcareous nannoplankton and possibly ammonoids. However, the observation of discordant extinction patterns in other marine tetrapod groups such as ichthyosaurs and marine crocodylomorphs suggests that clade-specific factors may have been more important than overarching extrinsic drivers of faunal turnover during the Jurassic-Cretaceous boundary interval.


Assuntos
Evolução Biológica , Extinção Biológica , Répteis/classificação , Animais , Fósseis , Oceanos e Mares
11.
PLoS One ; 7(3): e31838, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438869

RESUMO

Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.


Assuntos
Fósseis , Répteis/anatomia & histologia , Adaptação Fisiológica , Animais , Evolução Biológica , Tamanho Corporal , Ecossistema , Extinção Biológica , Variação Genética , História Antiga , Funções Verossimilhança , Modelos Biológicos , Paleontologia , Filogenia , Répteis/classificação , Répteis/genética , Répteis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA