Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(15): 4290-4293, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090916

RESUMO

In this Letter, we report for the first time to our knowledge a 2 mJ-level 2.09 µm Ho:YAG regenerative amplifier (RA) seeded by the first-stage Ho-doped fiber (HDF) preamplifier of a gain-switched laser diode (GSLD). After the single-pass power amplifier (SPPA), the output of a 2.09 µm pulse laser with 1 kHz, 570 ps, and >10 mJ was achieved. The overall gain of the whole amplifier system was greater than 90 dB, providing a novel, stable, and reliable sub-nanosecond (sub-ns) pump source operating at a pulse repetition frequency (PRF) of 1 kHz for an optical parametric generator (OPG) based on ZnGeP2 (ZGP). Specifically, for the ZGP OPG structure, a maximum pulse energy of 1.82 mJ at 3-5 µm had been achieved with an injected pump pulse energy of 5.47 mJ, corresponding to a slope efficiency of 39.5% and an optical-to-optical conversion efficiency (OOCE) of 33.27%.

2.
Opt Lett ; 49(15): 4278-4281, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090913

RESUMO

In this Letter, we first reported on a mid-infrared double-pass optical parametric generator (OPG) based on a single type-II phase-matching BaGa4Se7 (BGSe) crystal, pumped at 2.1 µm. The OPG achieved a maximum pulse energy of 55 µJ for generating narrowband mid-infrared laser pulses. The signal and idler lights exhibited center wavelengths of 4.04 and 4.33 µm, respectively, with bandwidths of 18.6 nm (11.4 cm-1) and 20.4 nm (10.9 cm-1). To improve the output performance, we utilized a cascaded scheme of type-I ZnGeP2 (ZGP) and type-II BGSe crystals. The spectral bandwidths of the signal and idler lights, nearing 4 µm, were narrower than 170 nm (90 cm-1), representing a significant improvement over the ZGP OPG. The cascaded OPG achieved a remarkable total optical-to-optical conversion efficiency (OOCE) of 14.9% and a maximum pulse energy of 0.329 mJ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA