RESUMO
When exposed to rhythmic stimulation, the human brain displays rhythmic activity across sensory modalities and regions. Given the ubiquity of this phenomenon, how sensory rhythms are transformed into neural rhythms remains surprisingly inconclusive. An influential model posits that endogenous oscillations entrain to external rhythms, thereby encoding environmental dynamics and shaping perception. However, research on neural entrainment faces multiple challenges, from ambiguous definitions to methodological difficulties when endogenous oscillations need to be identified and disentangled from other stimulus-related mechanisms that can lead to similar phase-locked responses. Yet, recent years have seen novel approaches to overcome these challenges, including computational modeling, insights from dynamical systems theory, sophisticated stimulus designs, and study of neuropsychological impairments. This review outlines key challenges in neural entrainment research, delineates state-of-the-art approaches, and integrates findings from human and animal neurophysiology to provide a broad perspective on the usefulness, validity, and constraints of oscillatory models in brain-environment interaction.
Assuntos
Encéfalo , Humanos , Animais , Encéfalo/fisiologia , Modelos Neurológicos , Periodicidade , Ondas Encefálicas/fisiologiaRESUMO
The field of computer vision has long drawn inspiration from neuroscientific studies of the human and non-human primate visual system. The development of convolutional neural networks (CNNs), for example, was informed by the properties of simple and complex cells in early visual cortex. However, the computational relevance of oscillatory dynamics experimentally observed in the visual system are typically not considered in artificial neural networks (ANNs). Computational models of neocortical dynamics, on the other hand, rarely take inspiration from computer vision. Here, we combine methods from computational neuroscience and machine learning to implement multiplexing in a simple ANN using oscillatory dynamics. We first trained the network to classify individually presented letters. Post-training, we added temporal dynamics to the hidden layer, introducing refraction in the hidden units as well as pulsed inhibition mimicking neuronal alpha oscillations. Without these dynamics, the trained network correctly classified individual letters but produced a mixed output when presented with two letters simultaneously, indicating a bottleneck problem. When introducing refraction and oscillatory inhibition, the output nodes corresponding to the two stimuli activate sequentially, ordered along the phase of the inhibitory oscillations. Our model implements the idea that inhibitory oscillations segregate competing inputs in time. The results of our simulations pave the way for applications in deeper network architectures and more complicated machine learning problems.
Assuntos
Biologia Computacional , Modelos Neurológicos , Redes Neurais de Computação , Humanos , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Aprendizado de Máquina , Simulação por ComputadorRESUMO
Over the past decades, numerous studies have linked cortical gamma oscillations (â¼30-100 Hz) to neurocomputational mechanisms. Their functional relevance, however, is still passionately debated. Here, we asked whether endogenous gamma oscillations in the human brain can be entrained by a rhythmic photic drive >50 Hz. Such a noninvasive modulation of endogenous brain rhythms would allow conclusions about their causal involvement in neurocognition. To this end, we systematically investigated oscillatory responses to a rapid sinusoidal flicker in the absence and presence of endogenous gamma oscillations using magnetoencephalography (MEG) in combination with a high-frequency projector. The photic drive produced a robust response over visual cortex to stimulation frequencies of up to 80 Hz. Strong, endogenous gamma oscillations were induced using moving grating stimuli as repeatedly done in previous research. When superimposing the flicker and the gratings, there was no evidence for phase or frequency entrainment of the endogenous gamma oscillations by the photic drive. Unexpectedly, we did not observe an amplification of the flicker response around participants' individual gamma frequencies (IGFs); rather, the magnitude of the response decreased monotonically with increasing frequency. Source reconstruction suggests that the flicker response and the gamma oscillations were produced by separate, coexistent generators in visual cortex. The presented findings challenge the notion that cortical gamma oscillations can be entrained by rhythmic visual stimulation. Instead, the mechanism generating endogenous gamma oscillations seems to be resilient to external perturbation.SIGNIFICANCE STATEMENT We aimed to investigate to what extent ongoing, high-frequency oscillations in the gamma-band (30-100 Hz) in the human brain can be entrained by a visual flicker. Gamma oscillations have long been suggested to coordinate neuronal firing and enable interregional communication. Our results demonstrate that rhythmic visual stimulation cannot hijack the dynamics of ongoing gamma oscillations; rather, the flicker response and the endogenous gamma oscillations coexist in different visual areas. Therefore, while a visual flicker evokes a strong neuronal response even at high frequencies in the gamma-band, it does not entrain endogenous gamma oscillations in visual cortex. This has important implications for interpreting studies investigating the causal and neuroprotective effects of rhythmic sensory stimulation in the gamma-band.
Assuntos
Ritmo Gama/fisiologia , Córtex Visual/fisiologia , Adulto , Relógios Biológicos/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Estimulação Luminosa , Percepção Visual/fisiologiaRESUMO
The aim of this study is to uncover the network dynamics of the human visual cortex by driving it with a broadband random visual flicker. We here applied a broadband flicker (1-720 Hz) while measuring the MEG and then estimated the temporal response function (TRF) between the visual input and the MEG response. This TRF revealed an early response in the 40-60 Hz gamma range as well as in the 8-12 Hz alpha band. While the gamma band response is novel, the latter has been termed the alpha band perceptual echo. The gamma echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was subject-specific thereby reflecting the individual dynamical properties of the early visual cortex. To understand the neuronal mechanisms generating the gamma echo, we implemented a pyramidal-interneuron gamma (PING) model that produces gamma oscillations in the presence of constant input currents. Applying a broadband input current mimicking the visual stimulation allowed us to estimate TRF between the input current and the population response (akin to the local field potentials). The TRF revealed a gamma echo that was similar to the one we observed in the MEG data. Our results suggest that the visual gamma echo can be explained by the dynamics of the PING model even in the absence of sustained gamma oscillations.
Assuntos
Fusão Flicker , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Humanos , Magnetoencefalografia , Modelos Neurológicos , Estimulação Luminosa , Percepção VisualRESUMO
In addiction, there are few human studies on the neural basis of cue-induced changes in value-based decision making (Pavlovian-to-instrumental transfer, PIT). It is especially unclear whether neural alterations related to PIT are due to the physiological effects of substance abuse or rather related to learning processes and/or other etiological factors related to addiction. We have thus investigated whether neural activation patterns during a PIT task help to distinguish subjects with gambling disorder (GD), a nonsubstance-based addiction, from healthy controls (HCs). Thirty GD and 30 HC subjects completed an affective decision-making task in a functional magnetic resonance imaging (fMRI) scanner. Gambling-associated and other emotional cues were shown in the background during the task. Data collection and feature modeling focused on a network of nucleus accumbens (NAcc), amygdala, and orbitofrontal cortex (OFC) (derived from PIT and substance use disorder [SUD] studies). We built and tested a linear classifier based on these multivariate neural PIT signatures. GD subjects showed stronger PIT than HC subjects. Classification based on neural PIT signatures yielded a significant area under the receiver operating curve (AUC-ROC) (0.70, p = 0.013). GD subjects showed stronger PIT-related functional connectivity between NAcc and amygdala elicited by gambling cues, as well as between amygdala and OFC elicited by negative and positive cues. HC and GD subjects were thus distinguishable by PIT-related neural signatures including amygdala-NAcc-OFC functional connectivity. Neural PIT alterations in addictive disorders might not depend on the physiological effect of a substance of abuse but on related learning processes or even innate neural traits.
Assuntos
Comportamento Aditivo/psicologia , Encéfalo/fisiopatologia , Tomada de Decisões , Jogo de Azar/psicologia , Imageamento por Ressonância Magnética/métodos , Adulto , Estudos de Casos e Controles , Sinais (Psicologia) , Feminino , Humanos , MasculinoRESUMO
Transcranial electrical stimulation (tES) of the brain can have variable effects, plausibly driven by individual differences in neuroanatomy and resulting differences of the electric fields inside the brain. Here, we integrated individual simulations of electric fields during tES with source localization to predict variability of transcranial alternating current stimulation (tACS) aftereffects on α-oscillations. In two experiments, participants received 20-min of either α-tACS (1 mA) or sham stimulation. Magnetoencephalogram (MEG) was recorded for 10-min before and after stimulation. tACS caused a larger power increase in the α-band compared to sham. The variability of this effect was significantly predicted by measures derived from individual electric field modeling. Our results directly link electric field variability to variability of tACS outcomes, underline the importance of individualizing stimulation protocols, and provide a novel approach to analyze tACS effects in terms of dose-response relationships.