Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 5537, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956413

RESUMO

Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Fígado , Proteoma , Animais , Fígado/metabolismo , Proteoma/metabolismo , Masculino , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Transcriptoma , Camundongos , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica , Síndrome do Jet Lag/metabolismo , Jornada de Trabalho em Turnos
2.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693605

RESUMO

Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag, which impact millions of people worldwide, are ill-defined. Here, we provided the first comprehensive description of liver circadian gene expression under normal and after ECD conditions. We found that post-transcription and post-translation processes are dominant contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome is re-written by ECD. The re-writing, which is associated with changes of circadian cis-regulatory elements, RNA-processing and protein trafficking, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.

3.
Dev Biol ; 323(1): 105-13, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18761008

RESUMO

We show here that the Drosophila MADF/BESS domain transcription factor Dip3, which is expressed in differentiating photoreceptors, regulates neuronal differentiation in the compound eye. Loss of Dip3 activity in photoreceptors leads to an extra photoreceptor in many ommatidia, while ectopic expression of Dip3 in non-neuronal cells results in photoreceptor loss. These findings are consistent with the idea that Dip3 is required non-cell autonomously to block extra photoreceptor formation. Dip3 may mediate the spatially restricted potentiation of Notch (N) signaling since the Dip3 misexpression phenotype is suppressed by reducing N signaling and misexpression of Dip3 leads to ectopic activity of a N-responsive enhancer. Analysis of mosaic ommatidia suggests that no specific photoreceptor must be mutant to generate the mutant phenotype. Remarkably, however, mosaic pupal ommatidia with three or fewer Dip3(+) photoreceptors always differentiate an extra photoreceptor, while those with four or more Dip3(+) photoreceptors never differentiate an extra photoreceptor. These findings are consistent with the notion that Dip3 in photoreceptors activates a heretofore unsuspected diffusible ligand that may work in conjunction with the N pathway to prevent a subpopulation of undifferentiated cells from choosing a neuronal fate.


Assuntos
Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Animais , Drosophila/embriologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Modelos Biológicos , Mutação , Neurônios/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Fatores de Transcrição/genética
4.
Mech Dev ; 125(1-2): 130-41, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18037276

RESUMO

In Drosophila, the eye and antenna originate from a single epithelium termed the eye-antennal imaginal disc. Illumination of the mechanisms that subdivide this epithelium into eye and antenna would enhance our understanding of the mechanisms that restrict stem cell fate. We show here that Dip3, a transcription factor required for eye development, alters fate determination when misexpressed in the early eye-antennal disc, and have taken advantage of this observation to gain new insight into the mechanisms controlling the eye-antennal switch. Dip3 misexpression yields extra antennae by two distinct mechanisms: the splitting of the antennal field into multiple antennal domains (antennal duplication), and the transformation of the eye disc to an antennal fate. Antennal duplication requires Dip3-induced under proliferation of the eye disc and concurrent over proliferation of the antennal disc. While previous studies have shown that overgrowth of the antennal disc can lead to antennal duplication, our results show that overgrowth is not sufficient for antennal duplication, which may require additional signals perhaps from the eye disc. Eye-to-antennal transformation appears to result from the combination of antennal selector gene activation, eye determination gene repression, and cell cycle perturbation in the eye disc. Both antennal duplication and eye-to-antennal transformation are suppressed by the expression of genes that drive the cell cycle providing support for tight coupling of cell fate determination and cell cycle control. The finding that this transformation occurs only in the eye disc, and not in other imaginal discs, suggests a close developmental and therefore evolutionary relationship between eyes and antennae.


Assuntos
Drosophila melanogaster/embriologia , Olho/embriologia , Expressão Gênica , Órgãos dos Sentidos/embriologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Imuno-Histoquímica , Fatores de Transcrição/genética
5.
Dev Comp Immunol ; 32(11): 1290-300, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18538389

RESUMO

Dorsal interacting protein 3 (Dip3) contains a MADF DNA-binding domain and a BESS protein interaction domain. The Dip3 BESS domain was previously shown to bind to the Dorsal Rel homology domain. We show here that Dip3 also binds to the Relish Rel homology domain and enhances Rel family transcription factor function in both dorsoventral patterning and the immune response. While Dip3 is not essential, Dip3 mutations enhance the embryonic patterning defects that result from dorsal haplo-insufficiency, indicating that Dip3 may render dorsoventral patterning more robust. Dip3 is also required for optimal resistance to immune challenge since Dip3 mutant adults and larvae infected with bacteria have shortened lifetimes relative to infected wild-type flies. Furthermore, the mutant larvae exhibit significantly reduced expression of antimicrobial defense genes. Chromatin immunoprecipitation experiments in S2 cells indicate the presence of Dip3 at the promoters of these genes, and this binding requires the presence of Rel proteins at these promoters.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/prevenção & controle , Regulação da Expressão Gênica no Desenvolvimento , Mutação/genética , Fenótipo , Fatores de Transcrição/genética
6.
Nat Struct Mol Biol ; 22(10): 759-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323038

RESUMO

Circadian rhythms in mammals are driven by a feedback loop in which the transcription factor Clock-Bmal1 activates expression of Per and Cry proteins, which together form a large nuclear complex (Per complex) that represses Clock-Bmal1 activity. We found that mouse Clock-Bmal1 recruits the Ddb1-Cullin-4 ubiquitin ligase to Per (Per1 and Per2), Cry (Cry1 and Cry2) and other circadian target genes. Histone H2B monoubiquitination at Per genes was rhythmic and depended on Bmal1, Ddb1 and Cullin-4a. Depletion of Ddb1-Cullin-4a or an independent decrease in H2B monoubiquitination caused defective circadian feedback and decreased the association of the Per complex with DNA-bound Clock-Bmal1. Clock-Bmal1 thus covalently marks Per genes for subsequent recruitment of the Per complex. Our results reveal a chromatin-mediated signal from the positive to the negative limb of the clock that provides a licensing mechanism for circadian feedback.


Assuntos
Ritmo Circadiano/fisiologia , Retroalimentação Fisiológica/fisiologia , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Imunoprecipitação da Cromatina , Cromatografia Líquida , Ritmo Circadiano/genética , Proteínas Culina/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Ubiquitinação
7.
Methods Enzymol ; 551: 197-210, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662458

RESUMO

In mammals, circadian rhythms are generated at least in part by a cell-autonomous transcriptional feedback loop in which the three PERIOD (PER) and two CRYPTOCHROME (CRY) proteins inhibit the activity of the dimeric transcription factor CLOCK-BMAL1, thereby repressing their own expression. Upon nuclear entry, the PER and CRY proteins form a large protein complex (PER complex) that carries out circadian negative feedback by means of at least two basic functions: (1) it brings together multiple effector proteins that repress transcription and (2) it delivers these repressive effectors directly to CLOCK-BMAL1 bound to E-box sequences of circadian target genes. At present, the composition, mechanisms of action, and dynamics of PER complexes in circadian clock negative feedback are incompletely understood. Here, we describe several experimental approaches to the study of PER complexes obtained from mammalian tissues. We focus on the isolation of nuclei from mouse tissues, the extraction of PER complexes from the isolated nuclei, characterization of native PER complexes by gel filtration and blue native polyacrylamide gel electrophoresis, preparative immunoaffinity purification of PER complexes for mass spectrometric identification of constituent proteins, and chromatin immunoprecipitation to monitor the recruitment of PER complex proteins to CLOCK-BMAL1 at E-box sites of clock-regulated genes.


Assuntos
Complexos Multiproteicos/isolamento & purificação , Proteínas Circadianas Period/isolamento & purificação , Animais , Imunoprecipitação da Cromatina , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Humanos
8.
Nat Struct Mol Biol ; 21(2): 126-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24413057

RESUMO

The mammalian circadian clock is built on a molecular feedback loop in which the Period (PER) proteins, acting in a large, poorly understood complex, repress Clock-Bmal1, the transcription factor driving their expression. We found that mouse PER complexes include the histone methyltransferase HP1γ-Suv39h. PER proteins recruited HP1γ-Suv39h to the Per1 and Per2 promoters, and HP1γ-Suv39h proved important for circadian di- and trimethylation of histone H3 Lys9 (H3K9) at the Per1 promoter, feedback repression and clock function. HP1γ-Suv39h was recruited to the Per1 and Per2 promoters ~4 h after recruitment of HDAC1, a PER-associated protein previously implicated in clock function and H3K9 deacetylation at the Per1 promoter. PER complexes containing HDAC1 or HP1γ-Suv39h appeared to be physically separable. Circadian clock negative feedback by the PER complex thus involves dynamic, ordered recruitment of repressive chromatin modifiers to DNA-bound Clock-Bmal1.


Assuntos
Montagem e Desmontagem da Cromatina , Relógios Circadianos/genética , Proteínas Circadianas Period/fisiologia , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Repressoras/metabolismo
9.
Science ; 332(6036): 1436-9, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21680841

RESUMO

Circadian rhythms in mammals are generated by a feedback loop in which the three PERIOD (PER) proteins, acting in a large complex, inhibit the transcriptional activity of the CLOCK-BMAL1 dimer, which represses their own expression. Although fundamental, the mechanism of negative feedback in the mammalian clock, or any eukaryotic clock, is unknown. We analyzed protein constituents of PER complexes purified from mouse tissues and identified PSF (polypyrimidine tract-binding protein-associated splicing factor). Our analysis indicates that PSF within the PER complex recruits SIN3A, a scaffold for assembly of transcriptional inhibitory complexes and that the PER complex thereby rhythmically delivers histone deacetylases to the Per1 promoter, which repress Per1 transcription. These findings provide a function for the PER complex and a molecular mechanism for circadian clock negative feedback.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Retroalimentação Fisiológica , Proteínas Circadianas Period/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/metabolismo , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Espectrometria de Massas , Camundongos , Fator de Processamento Associado a PTB , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3 , Transcrição Gênica
10.
J Biol Chem ; 279(29): 30287-97, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15138251

RESUMO

Gonadotropin-releasing hormone (GnRH) is the central regulator of reproductive function. Expression of the GnRH gene is confined to a rare population of neurons scattered throughout the hypothalamus. Restricted expression of the rat GnRH gene is driven by a multicomponent enhancer and an evolutionarily conserved promoter. Oct-1, a ubiquitous POU homeodomain transcription factor, was identified as an essential factor regulating GnRH transcription in the GT1-7 hypothalamic neuronal cell line. In this study, we conducted a two-hybrid interaction screen in yeast using a GT1-7 cDNA library to search for specific Oct-1 cofactors. Using this approach, we isolated Pbx1b, a TALE homeodomain transcription factor that specifically associates with Oct-1. We show that heterodimers containing Pbx/Prep1 or Pbx/Meis1 TALE homeodomain proteins bind to four functional elements within the GnRH regulatory region, each in close proximity to an Oct-1-binding site. Cotransfection experiments indicate that TALE proteins are essential for GnRH promoter activity in the GT1-7 cells. Moreover, Pbx1 and Oct-1, as well as Prep1 and Oct-1, form functional complexes that enhance GnRH gene expression. Finally, Pbx1 is expressed in GnRH neurons in embryonic as well as mature mice, suggesting that the associations between TALE homeodomain proteins and Oct-1 regulate neuron-specific expression of the GnRH gene in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/metabolismo , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/química , Dimerização , Relação Dose-Resposta a Droga , Biblioteca Gênica , Glutationa Transferase/metabolismo , Proteínas de Homeodomínio , Fator C1 de Célula Hospedeira , Hipotálamo/metabolismo , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Neurônios/metabolismo , Fator 1 de Transcrição de Octâmero , Oligonucleotídeos/química , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Repressoras , Fatores de Transcrição/química , Transcrição Gênica , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA