Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 207: 116353, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31743789

RESUMO

Non-human primate functional MRI (fMRI) is a growing field in neuroscience. However, there is no standardized method for monkey fMRI data analysis, specifically for data preprocessing. The preprocessing of monkey fMRI data is challenged by several technical and experimental specificities of the monkey research such as artifacts related to body movements or to intracranial leads. Here we propose to address these challenges by developing a new versatile pipeline for macaque fMRI preprocessing. We developed a Python module, Pypreclin, to process raw images using state of the art algorithms embedded in a fully automatic pipeline. To evaluate its robustness, we applied Pypreclin to fMRI data acquired at 3T in both awake and anesthetized macaques, with or without iron oxide contrast agent, using single loop or multichannel phased-array coils, combined or not with intracranial implanted electrodes. We performed both resting-state and auditory evoked fMRI and compared the results of Pypreclin to a previously employed preprocessing pipeline. Pypreclin successfully achieved the registration of the fMRI data to the macaque brain template in all the experimental conditions. Moreover, Pypreclin enables more accurate locations of auditory evoked activations in relation to the gray matter at corrected level in the awake fMRI condition. Finally, using the Primate neuroimaging Data-Exchange open access platform, we could further validate Pypreclin for monkey fMRI images that were acquired at ultra-high fields, from other institutions and using different protocols. Pypreclin is a validated preprocessing tool that adapts to diverse experimental and technical situations of monkey fMRI. Pypreclin code is available on open source data sharing platform.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Movimento/fisiologia , Neuroimagem , Algoritmos , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Macaca , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos
2.
Anesthesiology ; 129(5): 942-958, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30028727

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: The mechanism by which anesthetics induce a loss of consciousness remains a puzzling problem. We hypothesized that a cortical signature of anesthesia could be found in an increase in similarity between the matrix of resting-state functional correlations and the anatomical connectivity matrix of the brain, resulting in an increased function-structure similarity. METHODS: We acquired resting-state functional magnetic resonance images in macaque monkeys during wakefulness (n = 3) or anesthesia with propofol (n = 3), ketamine (n = 3), or sevoflurane (n = 3). We used the k-means algorithm to cluster dynamic resting-state data into independent functional brain states. For each condition, we performed a regression analysis to quantify function-structure similarity and the repertoire of functional brain states. RESULTS: Seven functional brain states were clustered and ranked according to their similarity to structural connectivity, with higher ranks corresponding to higher function-structure similarity and lower ranks corresponding to lower correlation between brain function and brain anatomy. Anesthesia shifted the brain state composition from a low rank (rounded rank [mean ± SD]) in the awake condition (awake rank = 4 [3.58 ± 1.03]) to high ranks in the different anesthetic conditions (ketamine rank = 6 [6.10 ± 0.32]; moderate propofol rank = 6 [6.15 ± 0.76]; deep propofol rank = 6 [6.16 ± 0.46]; moderate sevoflurane rank = 5 [5.10 ± 0.81]; deep sevoflurane rank = 6 [5.81 ± 1.11]; P < 0.0001). CONCLUSIONS: Whatever the molecular mechanism, anesthesia led to a massive reconfiguration of the repertoire of functional brain states that became predominantly shaped by brain anatomy (high function-structure similarity), giving rise to a well-defined cortical signature of anesthesia-induced loss of consciousness.


Assuntos
Anestésicos/farmacologia , Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Eletroencefalografia/métodos , Feminino , Haplorrinos , Masculino , Descanso
3.
Sci Adv ; 8(11): eabl5547, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302854

RESUMO

Loss of consciousness is associated with the disruption of long-range thalamocortical and corticocortical brain communication. We tested the hypothesis that deep brain stimulation (DBS) of central thalamus might restore both arousal and awareness following consciousness loss. We applied anesthesia to suppress consciousness in nonhuman primates. During anesthesia, central thalamic stimulation induced arousal in an on-off manner and increased functional magnetic resonance imaging activity in prefrontal, parietal, and cingulate cortices. Moreover, DBS restored a broad dynamic repertoire of spontaneous resting-state activity, previously described as a signature of consciousness. None of these effects were obtained during the stimulation of a control site in the ventrolateral thalamus. Last, DBS restored a broad hierarchical response to auditory violations that was disrupted under anesthesia. Thus, DBS restored the two dimensions of consciousness, arousal and conscious access, following consciousness loss, paving the way to its therapeutical translation in patients with disorders of consciousness.


Assuntos
Estado de Consciência , Estimulação Encefálica Profunda , Animais , Nível de Alerta/fisiologia , Estado de Consciência/fisiologia , Estimulação Encefálica Profunda/métodos , Humanos , Primatas , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA