Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Glob Chang Biol ; 30(1): e17017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933478

RESUMO

Important clues about the ecological effects of climate change can arise from understanding the influence of other Earth-system processes on ecosystem dynamics but few studies span the inter-decadal timescales required. We, therefore, examined how variation in annual weather patterns associated with the North Atlantic Oscillation (NAO) over four decades was linked to synchrony and stability in a metacommunity of stream invertebrates across multiple, contrasting headwaters in central Wales (UK). Prolonged warmer and wetter conditions during positive NAO winters appeared to synchronize variations in population and community composition among and within streams thereby reducing stability across levels of ecological organization. This climatically mediated synchronization occurred in all streams irrespective of acid-base status and land use, but was weaker where invertebrate communities were more functionally diverse. Wavelet linear models indicated that variation in the NAO explained up to 50% of overall synchrony in species abundances at a timescale of 4-6 years. The NAO appeared to affect ecological dynamics through local variations in temperature, precipitation and discharge, but increasing hydrochemical variability within sites during wetter winters might have contributed. Our findings illustrate how large-scale climatic fluctuations generated over the North Atlantic can affect population persistence and dynamics in inland freshwater ecosystems in ways that transcend local catchment character. Protecting and restoring functional diversity in stream communities might increase their stability against warmer, wetter conditions that are analogues of ongoing climate change. Catchment management could also dampen impacts and provide options for climate change adaptation.


Assuntos
Ecossistema , Invertebrados , Animais , Tempo (Meteorologia) , Temperatura , Estações do Ano
2.
Biol Lett ; 17(3): 20200798, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33726566

RESUMO

The relationship between body mass (M) and size class abundance (N) depicts patterns of community structure and energy flow through food webs. While the general assumption is that M and N scale linearly (on log-log axes), nonlinearity is regularly observed in natural systems, and is theorized to be driven by nonlinear scaling of trophic level (TL) with M resulting in the rapid transfer of energy to consumers in certain size classes. We tested this hypothesis with data from 31 stream food webs. We predicted that allochthonous subsidies higher in the web results in nonlinear M-TL relationships and systematic abundance peaks in macroinvertebrate and fish size classes (latter containing salmonids), that exploit terrestrial plant material and terrestrial invertebrates, respectively. Indeed, both M-N and M-TL significantly deviated from linear relationships and the observed curvature in M-TL scaling was inversely related to that observed in M-N relationships. Systemic peaks in M-N, and troughs in M-TL occurred in size classes dominated by generalist invertebrates, and brown trout. Our study reveals how allochthonous resources entering high in the web systematically shape community size structure and demonstrates the relevance of a generalized metabolic scaling model for understanding patterns of energy transfer in energetically 'open' food webs.


Assuntos
Cadeia Alimentar , Invertebrados , Animais , Tamanho Corporal , Peixes , Rios
3.
Glob Chang Biol ; 25(4): 1207-1221, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30663840

RESUMO

Plastic pollution is distributed across the globe, but compared with marine environments, there is only rudimentary understanding of the distribution and effects of plastics in other ecosystems. Here, we review the transport and effects of plastics across terrestrial, freshwater and marine environments. We focus on hydrological catchments as well-defined landscape units that provide an integrating scale at which plastic pollution can be investigated and managed. Diverse processes are responsible for the observed ubiquity of plastic pollution, but sources, fluxes and sinks in river catchments are poorly quantified. Early indications are that rivers are hotspots of plastic pollution, supporting some of the highest recorded concentrations. River systems are also likely pivotal conduits for plastic transport among the terrestrial, floodplain, riparian, benthic and transitional ecosystems with which they connect. Although ecological effects of micro- and nanoplastics might arise through a variety of physical and chemical mechanisms, consensus and understanding of their nature, severity and scale are restricted. Furthermore, while individual-level effects are often graphically represented in public media, knowledge of the extent and severity of the impacts of plastic at population, community and ecosystem levels is limited. Given the potential social, ecological and economic consequences, we call for more comprehensive investigations of plastic pollution in ecosystems to guide effective management action and risk assessment. This is reliant on (a) expanding research to quantify sources, sinks, fluxes and fates of plastics in catchments and transitional waters both independently as a major transport routes to marine ecosystems, (b) improving environmentally relevant dose-response relationships for different organisms and effect pathways, (c) scaling up from studies on individual organisms to populations and ecosystems, where individual effects are shown to cause harm and; (d) improving biomonitoring through developing ecologically relevant metrics based on contemporary plastic research.

4.
Ecol Lett ; 21(12): 1771-1780, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30257275

RESUMO

Body mass-abundance (M-N) allometries provide a key measure of community structure, and deviations from scaling predictions could reveal how cross-ecosystem subsidies alter food webs. For 31 streams across the UK, we tested the hypothesis that linear log-log M-N scaling is shallower than that predicted by allometric scaling theory when top predators have access to allochthonous prey. These streams all contained a common and widespread top predator (brown trout) that regularly feeds on terrestrial prey and, as hypothesised, deviations from predicted scaling increased with its dominance of the fish assemblage. Our study identifies a key beneficiary of cross-ecosystem subsidies at the top of stream food webs and elucidates how these inputs can reshape the size-structure of these 'open' systems.


Assuntos
Cadeia Alimentar , Rios , Animais , Ecossistema , Peixes
5.
Ecology ; 99(6): 1316-1326, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29701879

RESUMO

While there is widespread recognition of human involvement in biodiversity loss globally, at smaller spatial extents, the effects are less clear. One reason is that local effects are obscured by the use of summary biodiversity variables, such as species richness, that provide only limited insight into complex biodiversity change. Here, we use 30 yr of invertebrate data from a metacommunity of 10 streams in Wales, UK, combined with regional surveys, to examine temporal changes in multiple biodiversity measures at local, metacommunity, and regional scales. There was no change in taxonomic or functional α-diversity and spatial ß-diversity metrics at any scale over the 30-yr time series, suggesting a relative stasis in the system and no evidence for on-going homogenization. However, temporal changes in mean species composition were evident. Two independent approaches to estimate species niche breadth showed that compositional changes were associated with a systematic decline in mean community specialization. Estimates of species-specific local extinction and immigration probabilities suggested that this decline was linked to lower recolonization rates of specialists, rather than greater local extinction rates. Our results reveal the need for caution in implying stasis from patterns in α-diversity and spatial ß-diversity measures that might mask non-random biodiversity changes over time. We also show how different but complementary approaches to estimate niche breadth and functional distinctness of species can reveal long-term trends in community homogenization likely to be important to conservation and ecosystem function.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Invertebrados , Probabilidade , Especificidade da Espécie
6.
Glob Chang Biol ; 22(5): 1769-78, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26924811

RESUMO

Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide key facets of climate change adaptation for running waters.


Assuntos
Distribuição Animal , Ephemeroptera/fisiologia , Aquecimento Global , Oxigênio/análise , Rios/química , Animais , Mudança Climática , Inglaterra , Ephemeroptera/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
7.
Environ Pollut ; 343: 123225, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151091

RESUMO

Europe's ageing wastewater system often combines domestic sewage with surface runoff and industrial wastewaters. To reduce the associated risk of overloading wastewater treatment works during storms, and to prevent wastewater backing-up into properties, Combined Sewer Overflows (CSOs) are designed into wastewater networks to release excess discharge into rivers or coastal waters without treatment. In view of growing regulatory scrutiny and increasing public concern about their excessive discharge frequencies and potential impacts on environments and people, there is a need to better understand these impacts to allow prioritisation of cost-effective solutions.We review: i) the chemical, physical and biological composition of CSOs discharges; ii) spatio-temporal variations in the quantity, quality and load of overflows spilling into receiving waters; iii) the potential impacts on people, ecosystems and economies. Despite investigations illustrating the discharge frequency of CSOs, data on spill composition and loading of pollutants are too few to reach representative conclusions, particularly for emerging contaminants. Studies appraising impacts are also scarce, especially in contexts where there are multiple stressors affecting receiving waters. Given the costs of addressing CSOs problems, but also the likely long-term gains (e.g. economic stimulation as well as improvements to biodiversity, ecosystem services, public health and wellbeing), we highlight here the need to bolster these evidence gaps. We also advocate no-regrets options to alleviate CSO problems taking into consideration economic costs, carbon neutrality, ecosystem benefit and community well-being. Besides pragmatic, risk-based investment by utilities and local authorities to modernise wastewater systems, these include i) more systemic thinking, linking policy makers, consumers, utilities and regulators, to shift from local CSO issues to integrated catchment solutions with the aim of reducing contributions to wastewater from surface drainage and water consumption; ii) broader societal responsibilities for CSOs, for example through improved regulation, behavioural changes in water consumption and disposal of waste into wastewater networks, and iii) greater cost-sharing of wastewater use.


Assuntos
Ecossistema , Águas Residuárias , Humanos , Monitoramento Ambiental , Esgotos/química , Rios/química
8.
Sci Total Environ ; 935: 173428, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777065

RESUMO

The water-soluble polymer polyvinylpyrrolidone (PVP) is an established ingredient in pharmaceutical and personal care product (PPCP) formulations. Due to its high usage and lack of biodegradability, it has been detected up to 7.0 mg L-1 in wastewater and 0.1 mg L-1 in the receiving freshwaters, with several studies showing detrimental sublethal effects in a range of aquatic species. A lack of simple analytical methods to detect and quantify PVP currently impacts further investigation into the cause of these sublethal effects. In this paper we propose a refractive index gel-permeation chromatography (GPC) method to quantify PVP, which includes the processing of raw chromatograms using line deconvolution to calculate peak area. The method was then applied to Daphnia magna exposed to PVP for 48 h. A limit of detection (LOD) and limit of quantification (LOQ) of 0.05 and 0.2 mg mL-1 respectively was determined, with a recovery of 78 % from spiked Daphnia magna. PVP was detected in the samples above the LOD but below the LOQ. This suggests PVP is ingested by Daphnia magna, which warrants further investigation into whether bioaccumulation of PVP could be causing the sublethal effects seen in other studies.


Assuntos
Daphnia magna , Povidona , Poluentes Químicos da Água , Animais , Organismos Aquáticos/efeitos dos fármacos , Daphnia magna/efeitos dos fármacos , Daphnia magna/fisiologia , Monitoramento Ambiental/métodos , Limite de Detecção , Polímeros , Povidona/química , Refratometria , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Sci Total Environ ; 919: 170842, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340868

RESUMO

The COVID-19 pandemic has brought the epidemiological value of monitoring wastewater into sharp focus. The challenges of implementing and optimising wastewater monitoring vary significantly from one region to another, often due to the array of different wastewater systems around the globe, as well as the availability of resources to undertake the required analyses (e.g. laboratory infrastructure and expertise). Here we reflect on the local and shared challenges of implementing a SARS-CoV-2 monitoring programme in two geographically and socio-economically distinct regions, São Paulo state (Brazil) and Wales (UK), focusing on design, laboratory methods and data analysis, and identifying potential guiding principles for wastewater surveillance fit for the 21st century. Our results highlight the historical nature of region-specific challenges to the implementation of wastewater surveillance, including previous experience of using wastewater surveillance, stakeholders involved, and nature of wastewater infrastructure. Building on those challenges, we then highlight what an ideal programme would look like if restrictions such as resource were not a constraint. Finally, we demonstrate the value of bringing multidisciplinary skills and international networks together for effective wastewater surveillance.


Assuntos
COVID-19 , Pandemias , Humanos , Brasil/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia
10.
Water Res ; 262: 121989, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018584

RESUMO

Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes.


Assuntos
Metagenômica , Águas Residuárias , Águas Residuárias/microbiologia , Metagenômica/métodos , Farmacorresistência Bacteriana/genética , Reação em Cadeia da Polimerase em Tempo Real , Monitoramento Ambiental/métodos , Bactérias/genética , Bactérias/efeitos dos fármacos
11.
Nat Commun ; 15(1): 4372, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782932

RESUMO

Anthropogenically forced changes in global freshwater biodiversity demand more efficient monitoring approaches. Consequently, environmental DNA (eDNA) analysis is enabling ecosystem-scale biodiversity assessment, yet the appropriate spatio-temporal resolution of robust biodiversity assessment remains ambiguous. Here, using intensive, spatio-temporal eDNA sampling across space (five rivers in Europe and North America, with an upper range of 20-35 km between samples), time (19 timepoints between 2017 and 2018) and environmental conditions (river flow, pH, conductivity, temperature and rainfall), we characterise the resolution at which information on diversity across the animal kingdom can be gathered from rivers using eDNA. In space, beta diversity was mainly dictated by turnover, on a scale of tens of kilometres, highlighting that diversity measures are not confounded by eDNA from upstream. Fish communities showed nested assemblages along some rivers, coinciding with habitat use. Across time, seasonal life history events, including salmon and eel migration, were detected. Finally, effects of environmental conditions were taxon-specific, reflecting habitat filtering of communities rather than effects on DNA molecules. We conclude that riverine eDNA metabarcoding can measure biodiversity at spatio-temporal scales relevant to species and community ecology, demonstrating its utility in delivering insights into river community ecology during a time of environmental change.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , DNA Ambiental , Ecossistema , Peixes , Rios , DNA Ambiental/genética , DNA Ambiental/análise , Código de Barras de DNA Taxonômico/métodos , Animais , Peixes/genética , Peixes/classificação , Europa (Continente) , América do Norte , Análise Espaço-Temporal , Estações do Ano
12.
Environ Sci Technol ; 47(15): 8931-9, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23819781

RESUMO

Many urban European streams are recovering from industrial, mining, and sewage pollution during the 20th century. However, associated recolonization by clean water organisms can potentially result in exposure to legacy or novel toxic pollutants that persist in the environment. Between 2008 and 2010, we sampled eggs of a river passerine, the Eurasian dipper (Cinclus cinclus), from 33 rivers in South Wales and the English borders (UK) which varied in catchment land use from rural to highly urbanized. Dipper egg δ(15)N and δ(13)C stable isotopes were enriched from urban rivers while δ(34)S was strongly depleted, effectively discriminating their urban or rural origins at thresholds of 10% urban land cover or 1000 people/km(2). Concentrations of total polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs) were positively related to urban land cover and human population density while legacy organochlorine pesticides such as p,p'-DDE, lindane, and hexachlorobenzene were found in higher concentrations at rural sites. Levels of PBDEs in urban dipper eggs (range of 136-9299 ng/g lw) were among the highest ever reported in passerines, and some egg contaminants were at or approaching levels sufficient for adverse effects on avian development. With the exception of dieldrin, our data shows PCBs and other organochlorine pesticides have remained stable or increased in the past 20 years in dipper eggs, despite discontinued use.


Assuntos
Ovos/análise , Água Doce/química , Halogênios/análise , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Animais , Ásia , Aves , Europa (Continente) , Rios
13.
Sci Total Environ ; 860: 160549, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36455733

RESUMO

Environmental changes and biodiversity loss have emphasized the need to understand how communities affect ecosystem functioning and services. In riparian ecosystems, integrative, generalizable, broad-scale models of ecosystem functioning are still required to fulfill this need. However, few studies have explored the links between functional traits, ecosystem functions, and the services of riparian vegetation. Here we adapt the response-effect trait framework to link drivers, traits, ecosystem functions, and services in riparian ecosystems and assess ecosystem functioning sensitivity to environmental changes. The response-effect trait framework distinguishes between traits related to responses to the environment (response traits) and effects on ecosystem functioning (effect traits). The framework predicts that if response and effect traits are tightly linked, shifts in environmental drivers may alter communities' traits and ecosystem functioning. We adapted the response-effect trait framework for riparian plant communities and used it to assess the overlap between response and effect traits. We tested for correlation among traits identified in the framework and for community functional responses to climatic, topographic, soil, and land cover factors using riparian plant communities along a Temperate-Mediterranean climate gradient in North Portugal. We found a high overlap between response and effect traits, with seven out of thirteen traits identified as both response and effect. Additionally, we found trait linkages in four groups of positively correlated community mean traits. Precipitation and aridity were the most predictive drivers of community functional structure, and life form and leaf area were the most responsive traits. Overall, our findings suggest riparian plant communities are likely to propagate the effects of environmental changes to ecosystem functioning and services, affecting several regulation ecosystem services. This work highlights the sensitivity of riparian ecosystems to environmental changes and how it can affect ecosystem services. Similar functional approaches can be useful for adaptive ecosystem management to sustain biodiversity and ecosystem services.


Assuntos
Biodiversidade , Ecossistema , Plantas , Portugal , Fenótipo
14.
Sci Total Environ ; 894: 164912, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336411

RESUMO

Consumer wet wipes sold as biodegradable and flushable have tripled in market size in the last decade (>$3 billion in 2022), spurred by concerns over their potential harmful impact. Whilst predominantly composed of cellulosic fibres such as cotton, rayon, or wood pulp, these have been found to persist in sewers and in the environment in near equal abundance to their 'synthetic' counterparts. This questions whether flushed biodegradable wet wipes really degrade. Working from first principles, we therefore explore the physicochemical composition, environmental interactions, and degradation processes throughout the entire life cycle of cellulosic wet wipe fibres, from production to environmental fate, to understand their degradation behaviour in wastewater and freshwater systems. The results highlight that >50 % of biodegradable and flushable wipes are commonly manufactured with both biological biodegradable cellulose-based fibres and low-degradable synthetic fibres, and that they contain various property-enhancing chemical additives that can limit degradation. Whilst cellulose fibres in wet wipes are highly prone to physical fragmentation, their molecular degradation is difficult within the environment. This is due to the physicochemical manufacturing properties of wet wipes and the usually inadequate ambient conditions for its breakdown, creating persistent and possibly biologically harmful microfibres. We conclude that currently, most flushed biodegradable wet wipes do not really degrade, and that more empirical investigations are needed on their in-situ degradation behaviour and the environmental and manufacturing processes that may influence this breakdown. In doing so, full life cycle approaches to wet wipes should be adopted, considering their manufacturing properties, consumer disposal behaviour, and environmental implications.


Assuntos
Comportamento do Consumidor , Águas Residuárias , Água Doce , Comércio , Celulose
15.
Sci Total Environ ; 881: 163128, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37030365

RESUMO

Droughts significantly impact forest ecosystems, reducing forest health and productivity, compromising ecosystem functioning, and nature-based solutions for climate change. The response and resilience of riparian forests to drought are poorly understood despite their key role in the functioning of aquatic and terrestrial ecosystems. Here we investigate riparian forest drought responses and resilience to an extreme drought event at a regional scale. We also examine how drought event characteristics, average climate conditions, topography, soil, vegetation structure, and functional diversity shape the resilience of riparian forests to drought. We used a time series of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) to calculate the resistance to and recovery after an extreme drought (2017-2018) in 49 sites across an Atlantic-Mediterranean climate gradient in North Portugal. We used generalized additive models and multi-model inference to understand which factors best explained drought responses. We found a trade-off between drought resistance and recovery (maximum r = -0.5) and contrasting strategies across the climatic gradient of the study area. Riparian forests in the Atlantic regions showed comparatively higher resistance, while Mediterranean forests recovered more. Canopy structure and climate context were the most relevant predictors of resistance and recovery. However, median NDVI and NDWI had not returned to pre-drought levels (RcNDWI mean = 1.21, RcNDVI mean = 1.01) three years after the event. Our study shows that riparian forests have contrasting drought response strategies and may be susceptible to extended legacy effects associated with extreme and/or recurring droughts, similarly to upland forests. This work highlights the drought vulnerability of riparian ecosystems and emphasises the need for further studies on long-term resilience to droughts.


Assuntos
Secas , Ecossistema , Árvores/fisiologia , Florestas , Água , Mudança Climática
16.
Parasit Vectors ; 16(1): 209, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344906

RESUMO

BACKGROUND: Protozoan pathogens from the genus Cryptosporidium cause the diarrhoeal disease cryptosporidiosis in humans and animals globally. Freshwater biota could act as potential reservoirs or zoonotic sources of Cryptosporidium infections for livestock and people, but Cryptosporidium occurrence in aquatic biota is largely unexplored. The aim of this study was to investigate the occurrence of Cryptosporidium in a range of freshwater organisms in upland rivers across England and Wales. METHODS: Fish were sampled by electrofishing, invertebrate larvae by kick sampling and the otter Lutra lutra and mink Mustela vison through faecal samples collected opportunistically as part of a nation-wide study. PCR targeting the small subunit ribosomal RNA gene was used to detect Cryptosporidium species. RESULTS: Cryptosporidium occurred in just 0.8% of all the samples and in none of 73 samples from nine invertebrate genera. Cryptosporidium was detected in two of 2/74 fish samples (2.7%), both salmonids, and in 2/92 otter faecal samples (2.17%), but there were no positive samples in mink (0/24) or the bullhead Cottus gobio (0/16). CONCLUSIONS: Low detection rate of human-infective Cryptosporidium species in aquatic fauna indicates they may present a low risk of contamination of some upland freshwaters.


Assuntos
Criptosporidiose , Cryptosporidium , Lontras , Animais , Humanos , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Zoonoses/epidemiologia , Vison , Água Doce , Fezes , Genótipo
17.
Trends Ecol Evol ; 37(2): 138-146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772522

RESUMO

Transdisciplinary solutions are needed to achieve the sustainability of ecosystem services for future generations. We propose a framework to identify the causes of ecosystem function loss and to forecast the future of ecosystem services under different climate and pollution scenarios. The framework (i) applies an artificial intelligence (AI) time-series analysis to identify relationships among environmental change, biodiversity dynamics and ecosystem functions; (ii) validates relationships between loss of biodiversity and environmental change in fabricated ecosystems; and (iii) forecasts the likely future of ecosystem services and their socioeconomic impact under different pollution and climate scenarios. We illustrate the framework by applying it to watersheds, and provide system-level approaches that enable natural capital restoration by associating multidecadal biodiversity changes to chemical pollution.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Inteligência Artificial , Biodiversidade , Mudança Climática
18.
Conserv Biol ; 24(2): 573-82, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19878236

RESUMO

Invertebrates are important functionally in most ecosystems, but seldom appraised as surrogate indicators of biological diversity. Priority species might be good candidates; thus, here we evaluated whether three freshwater invertebrates listed in the U.K. Biodiversity Action Plan indicated the richness, composition, and conservation importance of associated wetland organisms as defined respectively by their alpha diversity, beta diversity, and threat status. Sites occupied by each of the gastropods Segmentina nitida, Anisus vorticulus, and Valvata macrostoma had greater species richness of gastropods and greater conservation importance than other sites. Each also characterized species assemblages associated with significant variations between locations in alpha or beta diversity among other mollusks and aquatic macrophytes. Because of their distinct resource requirements, conserving the three priority species extended the range of wetland types under management for nature conservation by 18% and the associated gastropod niche-space by around 33%. Although nonpriority species indicated variations in richness, composition, and conservation importance among other organisms as effectively as priority species, none characterized such a wide range of high-quality wetland types. We conclude that priority invertebrates are no more effective than nonpriority species as indicators of alpha and beta diversity or conservation importance among associated organisms. Nevertheless, conserving priority species can extend the array of distinct environments that are protected for their specialized biodiversity and environmental quality. We suggest that this is a key role for priority species and conservation surrogates more generally, and, on our evidence, can best be delivered through multiple species with contrasting habitat requirements.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Invertebrados , Áreas Alagadas , Animais , Dinâmica Populacional , Reino Unido
19.
Sci Total Environ ; 718: 134689, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843315

RESUMO

As the global demand for textiles increases, so to do the potential environmental impacts that stem from their production, use and disposal. Freshwater ecosystems are particularly at risk: rivers often act as the primary recipients of waste generated during the production of textiles and are subject to pollutants released during the broader lifecycle of a textile product. Here, we investigate how global technological and societal processes shape the way we produce, use and dispose of textiles, and what this means for the environmental quality and ecological health of freshwaters. We examine two predominant 'natural' and synthetic textiles (wool and Polyethylene terephthalate (PET), respectively), and find that risks to freshwater ecosystems vary throughout the lifecycle of these textiles; and across geographies, in-line with regulatory and economic landscapes. Woollen textiles pose most risk during the Production Phase, while PET textiles pose most risk during the Use and Disposal Phases. Our findings show that: (i) both 'natural' and synthetic textiles present substantial challenges for freshwater environments; and (ii) bespoke solutions are needed in areas of the world where the global division of labour and less stringent environmental regulations have concentrated textile production; but also in regions where high textile consumption combines with unsustainable disposal behaviours. Effective mitigation may combine technological advances with societal changes in market mechanisms, regulations, textile use and disposal.

20.
Nat Commun ; 11(1): 1594, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221282

RESUMO

The ingestion of plastics appears to be widespread throughout the animal kingdom with risks to individuals, ecosystems and human health. Despite growing information on the location, abundance and size distribution of plastics in the environment, it cannot be assumed that any given animal will ingest all sizes of plastic encountered. Here, we use published data to develop an allometric relationship between plastic consumption and animal size to estimate the size distribution of plastics feasibly ingested by animals. Based on more than 2000 gut content analyses from animals ranging over three orders of magnitude in size (lengths 9 mm to 10 m), body length alone accounts for 42% of the variance in the length of plastic an animal may ingest and indicates a size ratio of roughly 20:1 between animal body length and the largest plastic the animal may ingest. We expect this work to improve global assessments of plastic pollution risk by introducing a quantifiable link between animals and the plastics they can ingest.


Assuntos
Tamanho Corporal , Ingestão de Alimentos/fisiologia , Tamanho da Partícula , Plásticos/metabolismo , Animais , Ecossistema , Monitoramento Ambiental , Poluição Ambiental , Peixes , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA