Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7960): 386-394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100912

RESUMO

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Assuntos
Plasticidade Celular , Cobre , Inflamação , Transdução de Sinais , Animais , Camundongos , Cobre/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , NAD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peróxido de Hidrogênio/metabolismo , Epigênese Genética/efeitos dos fármacos , Metformina/análogos & derivados , Oxirredução , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética
2.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191214

RESUMO

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Camundongos , Acetaminofen , Anticorpos Monoclonais/metabolismo , Antioxidantes , Autoanticorpos/metabolismo , Autofagia , Tetracloreto de Carbono , Proteínas de Transporte/genética , Colina , Coenzima A/metabolismo , Concanavalina A/metabolismo , Diazepam , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Inflamação , Metionina
3.
Circulation ; 145(25): 1853-1866, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35616058

RESUMO

BACKGROUND: The insulin-like growth factor 1 (IGF1) pathway is a key regulator of cellular metabolism and aging. Although its inhibition promotes longevity across species, the effect of attenuated IGF1 signaling on cardiac aging remains controversial. METHODS: We performed a lifelong study to assess cardiac health and lifespan in 2 cardiomyocyte-specific transgenic mouse models with enhanced versus reduced IGF1 receptor (IGF1R) signaling. Male mice with human IGF1R overexpression or dominant negative phosphoinositide 3-kinase mutation were examined at different life stages by echocardiography, invasive hemodynamics, and treadmill coupled to indirect calorimetry. In vitro assays included cardiac histology, mitochondrial respiration, ATP synthesis, autophagic flux, and targeted metabolome profiling, and immunoblots of key IGF1R downstream targets in mouse and human explanted failing and nonfailing hearts, as well. RESULTS: Young mice with increased IGF1R signaling exhibited superior cardiac function that progressively declined with aging in an accelerated fashion compared with wild-type animals, resulting in heart failure and a reduced lifespan. In contrast, mice with low cardiac IGF1R signaling exhibited inferior cardiac function early in life, but superior cardiac performance during aging, and increased maximum lifespan, as well. Mechanistically, the late-life detrimental effects of IGF1R activation correlated with suppressed autophagic flux and impaired oxidative phosphorylation in the heart. Low IGF1R activity consistently improved myocardial bioenergetics and function of the aging heart in an autophagy-dependent manner. In humans, failing hearts, but not those with compensated hypertrophy, displayed exaggerated IGF1R expression and signaling activity. CONCLUSIONS: Our findings indicate that the relationship between IGF1R signaling and cardiac health is not linear, but rather biphasic. Hence, pharmacological inhibitors of the IGF1 pathway, albeit unsuitable for young individuals, might be worth considering in older adults.


Assuntos
Fator de Crescimento Insulin-Like I , Longevidade , Idoso , Animais , Promoção da Saúde , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
4.
EMBO J ; 37(14)2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875130

RESUMO

Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin-resistant non-small human cell lung cancer and ovarian cancer cell lines. Cisplatin-resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin-sensitive controls. The susceptibility of cisplatin-resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin-resistant clones, and glutamine supplementation rescued cisplatin-resistant clones from starvation-induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin-resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin-resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.


Assuntos
Antimetabólitos/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glutamina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Morte Celular , Linhagem Celular Tumoral , Metabolismo Energético , Feminino , Humanos , Espectrometria de Massas , Metaboloma , Modelos Biológicos , Nucleotídeos/biossíntese
5.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29807932

RESUMO

Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/fisiologia , Feminino , Complexo de Golgi/fisiologia , Humanos , Luz , Camundongos Endogâmicos C57BL , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/efeitos da radiação , Porfirinas/uso terapêutico , Sulfonamidas/efeitos da radiação , Sulfonamidas/uso terapêutico
6.
Proc Natl Acad Sci U S A ; 116(51): 25839-25849, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776254

RESUMO

Naive CD4+ T lymphocytes differentiate into different effector types, including helper and regulatory cells (Th and Treg, respectively). Heritable gene expression programs that define these effector types are established during differentiation, but little is known about the epigenetic mechanisms that install and maintain these programs. Here, we use mice defective for different components of heterochromatin-dependent gene silencing to investigate the epigenetic control of CD4+ T cell plasticity. We show that, upon T cell receptor (TCR) engagement, naive and regulatory T cells defective for TRIM28 (an epigenetic adaptor for histone binding modules) or for heterochromatin protein 1 ß and γ isoforms (HP1ß/γ, 2 histone-binding factors involved in gene silencing) fail to effectively signal through the PI3K-AKT-mTOR axis and switch to glycolysis. While differentiation of naive TRIM28-/- T cells into cytokine-producing effector T cells is impaired, resulting in reduced induction of autoimmune colitis, TRIM28-/- regulatory T cells also fail to expand in vivo and to suppress autoimmunity effectively. Using a combination of transcriptome and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses for H3K9me3, H3K9Ac, and RNA polymerase II, we show that reduced effector differentiation correlates with impaired transcriptional silencing at distal regulatory regions of a defined set of Treg-associated genes, including, for example, NRP1 or Snai3. We conclude that TRIM28 and HP1ß/γ control metabolic reprograming through epigenetic silencing of a defined set of Treg-characteristic genes, thus allowing effective T cell expansion and differentiation into helper and regulatory phenotypes.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética/fisiologia , Linfócitos T/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Animais , Autoimunidade/fisiologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Plasticidade Celular/fisiologia , Reprogramação Celular/genética , Homólogo 5 da Proteína Cromobox , Colo/patologia , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transcriptoma , Proteína 28 com Motivo Tripartido/genética
7.
Gut ; 70(7): 1299-1308, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33004548

RESUMO

OBJECTIVE: Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions. DESIGN: We used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice. RESULTS: Pectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists. CONCLUSIONS: Improvement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Intestinos/microbiologia , Hepatopatias Alcoólicas/etiologia , Microbiota/fisiologia , Pectinas/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carbazóis/farmacologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/química , Feminino , Humanos , Intestinos/fisiopatologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microbiota/efeitos dos fármacos , Pectinas/uso terapêutico , Prebióticos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética
8.
EMBO J ; 36(12): 1688-1706, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28465321

RESUMO

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19-kDa-interacting protein 3-like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX-deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX-dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.


Assuntos
Diferenciação Celular , Glicólise , Mitofagia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Animais , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo
9.
J Infect Dis ; 210(5): 824-33, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24604822

RESUMO

Granulomas are the hallmark of Mycobacterium tuberculosis infection. As the host fails to control the bacteria, the center of the granuloma exhibits necrosis resulting from the dying of infected macrophages. The release of the intracellular pool of nucleotides into the surrounding medium may modulate the response of newly infected macrophages, although this has never been investigated. Here, we show that extracellular adenosine triphosphate (ATP) indirectly modulates the expression of 272 genes in human macrophages infected with M. tuberculosis and that it induces their alternative activation. ATP is rapidly hydrolyzed by the ecto-ATPase CD39 into adenosine monophosphate (AMP), and it is AMP that regulates the macrophage response through the adenosine A2A receptor. Our findings reveal a previously unrecognized role for the purinergic pathway in the host response to M. tuberculosis. Dampening inflammation through signaling via the adenosine A2A receptor may limit tissue damage but may also favor bacterial immune escape.


Assuntos
Trifosfato de Adenosina/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Monofosfato de Adenosina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
10.
Methods Mol Biol ; 2769: 189-198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315398

RESUMO

The metabolic rearrangements of hepatic metabolism associated with liver cancer are still incompletely understood. There is an ongoing need to identify novel and more efficient diagnostic biomarkers and therapeutic targets based on the metabolic mechanisms of these diseases. In comparison to traditional diagnostic biomarkers, metabolomics is a comprehensive technique for discovering chemical signatures for liver cancer screening, prediction, and earlier diagnosis. Lipids are a large and diverse group of complex biomolecules that are at the heart of liver physiology and play an important role in the development and progression of cancer. In this chapter, we described two detailed protocols for targeted lipids analysis: glycerophospholipids and mono, di, tri-acylglycerides, both by Flow Injection Analysis (FIA) HPLC coupled to a SelexIon/QTRAP 6500+ system. These approaches provide a targeted lipidomic metabolomic signature of dissimilar metabolic disorders affecting liver cancers.


Assuntos
Glicerofosfolipídeos , Neoplasias Hepáticas , Humanos , Metabolômica/métodos , Biomarcadores
11.
Methods Mol Biol ; 2769: 199-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315399

RESUMO

Liver cancers are characterized by interindividual and intratumoral heterogeneity, which makes early diagnosis and the development of therapies challenging. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a potent and sensitive MS ionization technique for direct, unaltered 2D and 3D imaging of metabolites in complex biological samples. Indeed, DESI gently desorbs and ionizes analyte molecules from the sample surface using an electrospray source of highly charged aqueous spray droplets in ambient conditions. DESI-MS imaging of biological samples allows untargeted analysis and characterization of metabolites in liver cancers to identify new biomarkers of malignancy. In this chapter, we described a detailed protocol using liver cancer samples collected and stored for histopathology examination, either as frozen or as formalin-fixed, paraffin-embedded specimens. Such hepatocellular carcinoma samples can be subjected to DESI-MS analyses, illustrating the capacity of spatially resolved metabolomics to distinguish malignant lesions from adjacent normal liver tissue.


Assuntos
Neoplasias Hepáticas , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica , Neoplasias Hepáticas/diagnóstico por imagem , Biomarcadores
12.
Nat Commun ; 15(1): 1633, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395948

RESUMO

Tumor immunosurveillance plays a major role in melanoma, prompting the development of immunotherapy strategies. The gut microbiota composition, influencing peripheral and tumoral immune tonus, earned its credentials among predictors of survival in melanoma. The MIND-DC phase III trial (NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C melanoma to adjuvant treatment with autologous natural dendritic cell (nDC) or placebo (PL). Overall, 144 patients collected serum and stool samples before and after 2 bimonthly injections to perform metabolomics (MB) and metagenomics (MG) as prespecified exploratory analysis. Clinical outcomes are reported separately. Here we show that different microbes were associated with prognosis, with the health-related Faecalibacterium prausnitzii standing out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at baseline, nDC arm). Therapy coincided with major MB perturbations (acylcarnitines, carboxylic and fatty acids). Despite randomization, nDC arm exhibited MG and MB bias at baseline: relative under-representation of F. prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii anticorrelated with BA, medium- and long-chain acylcarnitines. Combined, these MG and MB biomarkers markedly determined prognosis. Altogether, the host-microbial interaction may play a role in localized melanoma. We value systematic MG and MB profiling in randomized trials to avoid baseline differences attributed to host-microbe interactions.


Assuntos
Melanoma , Microbiota , Humanos , Reprogramação Metabólica , Microbiota/genética , Células Dendríticas
13.
J Phys Chem A ; 117(12): 2508-16, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23437986

RESUMO

The structure of peptide fragments was studied using "action" IR spectroscopy. We report on room temperature IR spectra of b4 fragments of protonated GGGGG, AAAAA, and YGGFL in the X-H (X = C, N, O) stretching region. Experiments were performed with a tandem mass spectrometer combined with a table top tunable laser, and the multiple photon absorption process was assisted using an auxiliary high-power CO2 laser. These experiments provided well-resolved spectra with relatively narrow peaks in the X-H (X = C, N, O) stretching region for the b4 fragments of protonated GGGGG, AAAAA, and YGGFL. The 3200-3700 cm(-1) range of the first two of these spectra are rather similar, and the corresponding peaks can be assigned on the basis of the classical b ion structure that has a linear backbone terminated by the oxazolone ring at the C-terminus and ionizing proton residing on the oxazolone ring nitrogen. The spectrum of the b4 of YGGFL, on the other hand, is different from the two others and is characterized by a band observed near 3238 cm(-1). Similar band positions have recently been reported for one of the four isomers of the b4 of YGGFL studied using double resonance IR/UV technique. As proposed in this study, the IR spectrum of this ion at room temperature can also be assigned to a linear N-terminal amine protonated oxazolone structure. However, an alternative assignment could be proposed because our room temperature IR spectrum of the b4 of YGGFL nicely matches with the predicted IR absorption spectrum of a macrocyclic structure. Because not all experimental IR features are unambiguously assigned on the basis of the available literature structures, further theoretical studies will be required to fully exploit the benefits offered by IR spectroscopy in the X-H (X = C, N, O) stretching region.


Assuntos
Fragmentos de Peptídeos/química , Fótons , Prótons , Lasers de Gás , Oxazolona/química , Radiometria/instrumentação , Espectrofotometria Infravermelho , Espectrometria de Massas em Tandem
14.
Metabolites ; 13(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36984782

RESUMO

A number of studies have assessed the impact of SARS-CoV-2 infection and COVID-19 severity on the metabolome of exhaled air, saliva, plasma, and urine to identify diagnostic and prognostic biomarkers. In spite of the richness of the literature, there is no consensus about the utility of metabolomic analyses for the management of COVID-19, calling for a critical assessment of the literature. We identified mass spectrometric metabolomic studies on specimens from SARS-CoV2-infected patients and subjected them to a cross-study comparison. We compared the clinical design, technical aspects, and statistical analyses of published studies with the purpose to identify the most relevant biomarkers. Several among the metabolites that are under- or overrepresented in the plasma from patients with COVID-19 may directly contribute to excessive inflammatory reactions and deficient immune control of SARS-CoV2, hence unraveling important mechanistic connections between whole-body metabolism and the course of the disease. Altogether, it appears that mass spectrometric approaches have a high potential for biomarker discovery, especially if they are subjected to methodological standardization.

15.
Oncoimmunology ; 12(1): 2150472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545254

RESUMO

Extra-cellular galectins 1, 3 and 9 (gal-1, -3 and -9) are known to act as soluble immunosuppressive agents in various malignancies. Previous publications have suggested that their expression is dependent on the metabolic status of producing cells and reciprocally that they can influence metabolic pathways in their target cells. Very little is known about the status of gal-1, -3 and -9 in patients bearing head and neck squamous cell carcinomas (HNSCC) and about their relationships with the systemic metabolic condition. This study was conducted in plasma samples from a prospective cohort of 83 HNSCC patients with advanced disease. These samples were used to explore the distribution of gal-1, -3 and -9 and simultaneously to profile a series of 87 metabolites assessed by mass spectrometry. We identified galectin and metabolic patterns within five disease categories defined according to the primary site and human papillomavirus (HPV) status (HPV-positive and -negative oropharyngeal carcinomas, carcinomas of the oral cavity, hypopharynx and larynx carcinomas). Remarkably, samples related to hypopharyngeal carcinomas displayed the highest average concentration of gal-9 (p = .017) and a trend toward higher concentrations of kynurenine, a potential factor of tumor growth and immune suppression. In contrast, there was a tendency toward higher concentrations of fatty acids in samples related to oral cavity. These observations emphasize the diversity of HPV-negative HNSCCs. Depending on their primary site, they evolve into distinct types of immune and metabolic landscapes that seem to be congruent with specific oncogenic mechanisms.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Hipofaríngeas , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Estudos Prospectivos , Galectinas
16.
Nat Metab ; 5(11): 1911-1930, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37973897

RESUMO

Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B12 and molecular hallmarks of methionine starvation. Supplementation with vitamin B12 increases the efficiency of reprogramming both in mice and in cultured cells, the latter indicating a cell-intrinsic effect. We show that the epigenetic mark H3K36me3, which prevents illegitimate initiation of transcription outside promoters (cryptic transcription), is sensitive to vitamin B12 levels, providing evidence for a link between B12 levels, H3K36 methylation, transcriptional fidelity and efficient reprogramming. Vitamin B12 supplementation also accelerates tissue repair in a model of ulcerative colitis. We conclude that vitamin B12, through its key role in one-carbon metabolism and epigenetic dynamics, improves the efficiency of in vivo reprogramming and tissue repair.


Assuntos
Plasticidade Celular , Reprogramação Celular , Animais , Camundongos , Vitamina B 12 , Cicatrização , Vitaminas
17.
Aging Cell ; 22(11): e13946, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822253

RESUMO

Ageing is characterised at the molecular level by six transcriptional 'hallmarks of ageing', that are commonly described as progressively affected as time passes. By contrast, the 'Smurf' assay separates high-and-constant-mortality risk individuals from healthy, zero-mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age. We show that transcriptional heterogeneity increases with chronological age in non-Smurf individuals preceding the other five hallmarks of ageing that are specifically associated with the Smurf state. Using this approach, we also devise targeted pro-longevity genetic interventions delaying entry in the Smurf state. We anticipate that increased attention to the evolutionary conserved Smurf phenotype will bring about significant advances in our understanding of the mechanisms of ageing.


Assuntos
Envelhecimento , Longevidade , Humanos , Envelhecimento/genética , Longevidade/genética , Fenótipo , Evolução Biológica
18.
Cell Death Dis ; 14(11): 758, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989732

RESUMO

Autophagy inducers can prevent cardiovascular aging and age-associated diseases including atherosclerosis. Therefore, we hypothesized that autophagy-inducing compounds that act on atherosclerosis-relevant cells might have a protective role in the development of atherosclerosis. Here we identified 3,4-dimethoxychalcone (3,4-DC) as an inducer of autophagy in several cell lines from endothelial, myocardial and myeloid/macrophagic origin, as demonstrated by the aggregation of the autophagosome marker GFP-LC3 in the cytoplasm of cells, as well as the downregulation of its nuclear pool indicative of autophagic flux. In this respect, 3,4-DC showed a broader autophagy-inducing activity than another chalcone (4,4- dimethoxychalcone), spermidine and triethylene tetramine. Thus, we characterized the potential antiatherogenic activity of 3,4-DC in two different mouse models, namely, (i) neointima formation with smooth muscle expansion of vein segments grafted to the carotid artery and (ii) genetically predisposed ApoE-/- mice fed an atherogenic diet. In the vein graft model, local application of 3,4-DC was able to maintain the lumen of vessels and to reduce neointima lesions. In the diet-induced model, intraperitoneal injections of 3,4-DC significantly reduced the number of atherosclerotic lesions in the aorta. In conclusion, 3,4-DC stands out as an autophagy inducer with potent antiatherogenic activity.


Assuntos
Aterosclerose , Neointima , Camundongos , Animais , Neointima/tratamento farmacológico , Neointima/patologia , Hiperplasia/patologia , Aterosclerose/patologia , Aorta/patologia , Modelos Animais de Doenças , Autofagia , Camundongos Endogâmicos C57BL
19.
Metabolites ; 13(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36837817

RESUMO

Physical activity can be effective in preventing some of the adverse effects of aging on health. High-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are beneficial interventions for the quality of life of obese older individuals. The understanding of all possible metabolic mechanisms underlying these beneficial changes has not yet been established. The aim of this study was to analyze changes in the serum metabolome after 12 weeks of HIIT and MICT in obese older adults. Thirty-eight participants performed either HIIT (n = 26) or MICT (n = 12) three times per week for 12 weeks. Serum metabolites as well as clinical and biological parameters were assessed before and after the 12-week intervention. Among the 364 metabolites and ratio of metabolites identified, 51 metabolites changed significantly following the 12-week intervention. Out of them, 21 significantly changed following HIIT intervention and 18 significantly changed following MICT. Associations with clinical and biological adaptations revealed that changes in acyl-alkyl-phosphatidylcholine (PCae) (22:1) correlated positively with changes in handgrip strength in the HIIT group (r = 0.52, p < 0.01). A negative correlation was also observed between 2-oxoglutaric acid and HOMA-IR (r = -0.44, p < 0.01) when considering both groups together (HIIT and MICT). This metabolite also correlated positively with quantitative insulin-sensitivity check index (QUICKI) in both groups together (r = 0.46, p < 0.01) and the HIIT group (r = 0.51, p < 0.01). Additionally, in the MICT group, fumaric acid was positively correlated with triglyceride levels (r = 0.73, p < 0.01) and acetylcarnitine correlated positively with low-density lipoprotein (LDL) cholesterol (r = 0.81, p < 0.01). These four metabolites might represent potential metabolites of interest concerning muscle strength, glycemic parameters, as well as lipid profile parameters, and hence, for a potential healthy aging. Future studies are needed to confirm the association between these metabolites and a healthy aging.

20.
Nutrients ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771218

RESUMO

Metabolic regulation of glucose can be altered by fasting periods. We examined glucose metabolism and metabolomics profiles after 12 h and 36 h fasting in non-obese and obese participants and people with type 2 diabetes using oral glucose tolerance (OGTT) and intravenous glucose tolerance testing (IVGTT). Insulin sensitivity was estimated by established indices and mass spectrometric metabolomics was performed on fasting serum samples. Participants had a mean age of 43 ± 16 years (62% women). Fasting levels of glucose, insulin and C-peptide were significantly lower in all cohorts after 36 h compared to 12 h fasting (p < 0.05). In non-obese participants, glucose levels were significantly higher after 36 h compared to 12 h fasting at 120 min of OGTT (109 ± 31 mg/dL vs. 79 ± 18 mg/dL; p = 0.001) but insulin levels were lower after 36 h of fasting at 30 min of OGTT (41.2 ± 34.1 mU/L after 36 h vs. 56.1 ± 29.7 mU/L; p < 0.05). In contrast, no significant differences were observed in obese participants or people with diabetes. Insulin sensitivity improved in all cohorts after 36 h fasting. In line, metabolomics revealed subtle baseline differences and an attenuated metabolic response to fasting in obese participants and people with diabetes. Our data demonstrate an improved insulin sensitivity after 36 h of fasting with higher glucose variations and reduced early insulin response in non-obese people only.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Obesidade , Insulina/metabolismo , Glucose/metabolismo , Jejum , Glicemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA