Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35383362

RESUMO

Nuclear receptors (NRs) are important biological targets of endocrine-disrupting chemicals (EDCs). Identifying chemicals that can act as EDCs and modulate the function of NRs is difficult because of the time and cost of in vitro and in vivo screening to determine the potential hazards of the 100 000s of chemicals that humans are exposed to. Hence, there is a need for computational approaches to prioritize chemicals for biological testing. Machine learning (ML) techniques are alternative methods that can quickly screen millions of chemicals and identify those that may be an EDC. Computational models of chemical binding to multiple NRs have begun to emerge. Recently, a Nuclear Receptor Activity (NuRA) dataset, describing experimentally derived small-molecule activity against various NRs has been created. We have used the NuRA dataset to develop an ensemble of ML-based models to predict the agonism, antagonism, binding and effector binding of small molecules to nine different human NRs. We defined the applicability domain of the ML models as a measure of Tanimoto similarity to the molecules in the training set, which enhanced the performance of the developed classifiers. We further developed a user-friendly web server named 'NR-ToxPred' to predict the binding of chemicals to the nine NRs using the best-performing models for each receptor. This web server is freely accessible at http://nr-toxpred.cchem.berkeley.edu. Users can upload individual chemicals using Simplified Molecular-Input Line-Entry System, CAS numbers or sketch the molecule in the provided space to predict the compound's activity against the different NRs and predict the binding mode for each.


Assuntos
Disruptores Endócrinos , Receptores Citoplasmáticos e Nucleares , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Humanos , Aprendizado de Máquina , Receptores Citoplasmáticos e Nucleares/genética
2.
Environ Sci Technol ; 58(10): 4487-4499, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422483

RESUMO

Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.


Assuntos
Disruptores Endócrinos , Fluorocarbonos , Humanos , Receptores Citoplasmáticos e Nucleares , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo
3.
Environ Res ; 217: 114832, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403651

RESUMO

Due to their persistence and toxicity, perfluoroalkyl and polyfluoroalkyl substances (PFASs) constitute significant hazards to human health and the environment. Their effects include immune suppression, altered hormone levels, and osteoporosis. Recently, the most studied PFAS, perfluorooctanoic acid (PFOA), was shown to competitively binding to the Vitamin D receptor (VDR). VDR plays a crucial role in regulating genes involved in maintaining immune, endocrine, and calcium homeostasis, suggesting it may be a target for at least some of the health effects of PFAS. Hence, this study examined the potential binding of 5206 PFASs to VDR using molecular docking, molecular dynamics, and free energy binding calculations. We identified 14 PFAS that are predicted to interact strongly with VDR, similar to the natural ligands. We further investigated the interactions of VDR with 256 PFASs of established commercial importance. Eighty-three (32%) of these 256 commercially important PFAS were predicted to be stronger binders to VDR than PFOA. At least 16 PFASs of regulatory importance, because they have been identified in water supplies and human blood samples, were also more potent binders to VDR than PFOA. Further, PFASs are usually found together in contaminated drinking water and human blood samples, which raises the concern that multiple PFASs may act together as a mixture on VDR function, potentially producing harmful effects on the immune, endocrine, and bone homeostasis.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Simulação de Acoplamento Molecular , Receptores de Calcitriol , Fluorocarbonos/toxicidade , Caprilatos/toxicidade
4.
Environ Res ; 190: 109920, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32795691

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew's correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


Assuntos
Disruptores Endócrinos , Fluorocarbonos , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Fluorocarbonos/toxicidade , Aprendizado de Máquina , Programas de Rastreamento , Simulação de Acoplamento Molecular , Receptores Androgênicos
5.
Environ Sci Technol ; 52(3): 1542-1550, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29294279

RESUMO

Trichloroethylene (TCE) is a ubiquitous environmental contaminant, which may have effects on both ecosystem and human health. TCE has been reported to cause several toxic effects, but little effort has been made to assess the ecological risks of TCE or its major metabolites: trichloroethanol (TCOH), trichloroacetic acid, and oxalic acid (OA). In this study, the endocrine-disrupting potential of TCE and its metabolites were investigated using in vitro and in silico approaches. We examined alterations in the steroidogenesis pathway using the NCI-H295R cell line and utilized receptor-mediated luciferase reporter cell lines to identify effects on estrogen and androgen receptors. Molecular docking was also used to explore chemical interactions with these receptors. All test chemicals except OA significantly increased 17ß-estradiol production which can be attributed to an up-regulation of 17ß-hydroxysteroid dehydrogenase. Moreover, TCOH exhibited significant antiestrogenic activity with a RIC20 (20% relative inhibitory concentration) of 3.7 × 10-7 M. Molecular docking simulation supported this finding with lower docking scores for TCOH, indicating that hydrogen bonds may stabilize the interaction between TCOH and the estrogen receptor binding pocket. These findings suggest that TCE contamination poses an endocrine-disrupting threat, which has implications for both ecological and human health.


Assuntos
Tricloroetileno , Linhagem Celular , Ecossistema , Humanos , Simulação de Acoplamento Molecular , Ácido Tricloroacético
6.
Chem Res Toxicol ; 30(1): 94-104, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27715053

RESUMO

Pesticide researchers are students of nature, and each new compound and mechanism turns a page in the ever-expanding encyclopedia of life. Pesticides are both probes to learn about life processes and tools for pest management to facilitate food production and enhance health. In contrast to some household and industrial chemicals, pesticides are assumed to be hazardous to health and the environment until proven otherwise. About a thousand current pesticides working by more than 100 different mechanisms have helped understand many processes and coupled events. Pesticide chemical research is a major source of toxicology information on new natural products, novel targets or modes of action, resistance mechanisms, xenobiotic metabolism, selective toxicity, safety evaluations, and recommendations for safe and effective pest management. Target binding site models help define the effect of substituent changes and predict modifications for enhanced potency and safety and circumvention of resistance. The contribution of pesticide chemical research in toxicology is illustrated here with two each of the newer or most important insecticides, herbicides, and fungicides. The insecticides are imidacloprid and chlorantraniliprole acting on the nicotinic acetylcholine receptor and the ryanodine receptor Ca2+ channel, respectively. The herbicides are glyphosate that inhibits aromatic amino acid biosynthesis and mesotrione that prevents plastoquinone and carotenoid formation. The fungicides are azoxystrobin inhibiting the Qo site of the cytochrome bc1 complex and prothioconazole inhibiting the 14α-demethylase in ergosterol biosynthesis. The two target sites involved for each type of pesticide account for 27-40% of worldwide sales for all insecticides, herbicides, and fungicides. In each case, selection for resistance involving a single amino acid change in the binding site or detoxifying enzyme circumvents the pesticide chemists's structure optimization and guarantees survival of the pest and a continuing job for the design chemist. These lessons from nature are a continuing part of pest management and maintaining human and environmental health.


Assuntos
Praguicidas/toxicidade , Animais , Humanos , Natureza , Praguicidas/farmacologia , Pesquisa
7.
Langmuir ; 33(17): 4129-4137, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28296411

RESUMO

The molecular origins of adsorption of lignin-derived phenolics to metal-organic framework NU-1000 are investigated from aqueous solution as well as in competitive mode with glucose present in the same aqueous mixture. A comparison of adsorption equilibrium constants (Kads) for phenolics functionalized with either carboxylic acid or aldehyde substituents demonstrated only a slight increase (less than a factor of 6) for the former according to both experiments and calculations. This small difference in Kads between aldehyde and carboxylic-acid substituted adsorbates is consistent with the pyrene unit of NU-1000 as the adsorption site, rather than the zirconia nodes, while at saturation coverage, the adsorption capacity suggests multiple guests per pyrene. Experimental standard free energies of adsorption directly correlated with the molecular size and electronic structure calculations confirmed this direct relationship, with the pyrene units as adsorption site. The underlying origins of this relationship are grounded in noncovalent π-π interactions as being responsible for adsorption, the same interactions present in the condensed phase of the phenolics, which to a large extent govern their heat of vaporization. Thus, NU-1000 acts as a preformed aromatic cavity for driving aromatic guest adsorption from aqueous solution and does so specifically without causing detectable glucose adsorption from aqueous solution, thereby achieving complete glucose-phenolics separations. The reusability of NU-1000 during an adsorption/desorption cycle was good, even with some of the phenolic compounds with greatest affinity not easiliy removed with water and ethanol washes at room temperature. A competitive adsorption experiment gave an upper bound for Kads for glucose of at most 0.18 M-1, which can be compared with Kads for the phenolics investigated here, which fell in the range of 443-42 639 M-1. The actual value of Kads for glucose may be much closer to zero given the lack of observed glucose uptake with NU-1000 as adsorbent.

8.
Proc Natl Acad Sci U S A ; 110(43): 17273-7, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24108354

RESUMO

The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [(3)H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [(3)H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site.


Assuntos
Carbamatos/metabolismo , Moscas Domésticas/metabolismo , Imidazóis/metabolismo , Nitrocompostos/metabolismo , Compostos Organofosforados/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Carbamatos/química , Carbamatos/farmacologia , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Modelos Moleculares , Estrutura Molecular , Neonicotinoides , Nitrocompostos/química , Nitrocompostos/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores Nicotínicos/química , Trítio
9.
Pestic Biochem Physiol ; 121: 22-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26047108

RESUMO

The γ-aminobutyric acid (GABA) receptor has four distinct but overlapping and coupled targets of pesticide action importantly associated with little or no cross-resistance. The target sites are differentiated by binding assays with specific radioligands, resistant strains, site-directed mutagenesis and molecular modeling. Three of the targets are for non-competitive antagonists (NCAs) or channel blockers of widely varied chemotypes. The target of the first generation (20th century) NCAs differs between the larger or elongated compounds (NCA-IA) including many important insecticides of the past (cyclodienes and polychlorocycloalkanes) or present (fiproles) and the smaller or compact compounds (NCA-IB) highly toxic to mammals and known as cage convulsants, rodenticides or chemical threat agents. The target of greatest current interest is designated NCA-II for the second generation (21st century) of NCAs consisting for now of isoxazolines and meta-diamides. This new and uniquely different NCA-II site apparently differs enough between insects and mammals to confer selective toxicity. The fourth target is the avermectin site (AVE) for allosteric modulators of the chloride channel. NCA pesticides vary in molecular surface area and solvent accessible volume relative to avermectin with NCA-IBs at 20-22%, NCA-IAs at 40-45% and NCA-IIs at 57-60%. The same type of relationship relative to ligand-docked length is 27-43% for NCA-IBs, 63-71% for NCA-IAs and 85-105% for NCA-IIs. The four targets are compared by molecular modeling for the Drosophila melanogaster GABA-R. The principal sites of interaction are proposed to be: pore V1' and A2' for NCA-IB compounds; pore A2', L6' and T9' for NCA-IA compounds; pore T9' to S15' in proximity to M1/M3 subunit interface (or alternatively an interstitial site) for NCA-II compounds; and M1/M3, M2 interfaces for AVE. Understanding the relationships of these four binding sites is important in resistance management and in the discovery and use of safe and effective pest control agents.


Assuntos
Antagonistas GABAérgicos/farmacologia , Praguicidas/farmacologia , Receptores de GABA/metabolismo , Animais , Sítios de Ligação , Humanos
10.
Annu Rev Entomol ; 58: 99-117, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23317040

RESUMO

Neuroactive insecticides are the principal means of protecting crops, people, livestock, and pets from pest insect attack and disease transmission. Currently, the four major nerve targets are acetylcholinesterase for organophosphates and methylcarbamates, the nicotinic acetylcholine receptor for neonicotinoids, the γ-aminobutyric acid receptor/chloride channel for polychlorocyclohexanes and fiproles, and the voltage-gated sodium channel for pyrethroids and dichlorodiphenyltrichloroethane. Species selectivity and acquired resistance are attributable in part to structural differences in binding subsites, receptor subunit interfaces, or transmembrane regions. Additional targets are sites in the sodium channel (indoxacarb and metaflumizone), the glutamate-gated chloride channel (avermectins), the octopamine receptor (amitraz metabolite), and the calcium-activated calcium channel (diamides). Secondary toxic effects in mammals from off-target serine hydrolase inhibition include organophosphate-induced delayed neuropathy and disruption of the cannabinoid system. Possible associations between pesticides and Parkinson's and Alzheimer's diseases are proposed but not established based on epidemiological observations and mechanistic considerations.


Assuntos
Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Mamíferos/metabolismo , Doença de Alzheimer/induzido quimicamente , Animais , Humanos , Doença de Parkinson/etiologia , Ratos , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 107(41): 17527-32, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20876120

RESUMO

Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance.


Assuntos
Arabidopsis/imunologia , Ascomicetos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Guanidinas/farmacologia , Imidazóis/farmacologia , Inseticidas/farmacologia , Nitrocompostos/farmacologia , Ácido Salicílico/imunologia , Tiazóis/farmacologia , Arabidopsis/microbiologia , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas/imunologia , Guanidinas/química , Guanidinas/imunologia , Imidazóis/química , Imidazóis/imunologia , Inseticidas/química , Inseticidas/imunologia , Espectrometria de Massas , Estrutura Molecular , Neonicotinoides , Nitrocompostos/química , Nitrocompostos/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/metabolismo , Tiazóis/química , Tiazóis/imunologia
12.
Mol Carcinog ; 51(11): 881-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22012859

RESUMO

Elastase is the only currently identified target protein for indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin in cruciferous vegetables such as broccoli, cabbage, and Brussels sprouts that induces a cell cycle arrest and apoptosis of human breast cancer cells. In vitro elastase enzymatic assays demonstrated that I3C and at lower concentrations its more potent derivative 1-benzyl-indole-3-carbinol (1-benzyl-I3C) act as non-competitive allosteric inhibitors of elastase activity. Consistent with these results, in silico computational simulations have revealed the first predicted interactions of I3C and 1-benzyl-I3C with the crystal structure of human neutrophil elastase, and identified a potential binding cluster on an external surface of the protease outside of the catalytic site that implicates elastase as a target protein for both indolecarbinol compounds. The Δ205 carboxyterminal truncation of elastase, which disrupts the predicted indolecarbinol binding site, is enzymatically active and generates a novel I3C resistant enzyme. Expression of the wild type and Δ205 elastase in MDA-MB-231 human breast cancer cells demonstrated that the carboxyterminal domain of elastase is required for the I3C and 1-benzyl-I3C inhibition of enzymatic activity, accumulation of the unprocessed form of the CD40 elastase substrate (a tumor necrosis factor receptor family member), disruption of NFκB nuclear localization and transcriptional activity, and induction of a G1 cell cycle arrest. Surprisingly, expression of the Δ205 elastase molecule failed to reverse indolecarbinol stimulated apoptosis, establishing an elastase-dependent bifurcation point in anti-proliferative signaling that uncouples the cell cycle and apoptotic responses in human breast cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Ciclo Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Elastase de Leucócito/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Feminino , Humanos , Indóis/química , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/química , Elastase de Leucócito/genética , Modelos Moleculares , Mutação , NF-kappa B/análise , NF-kappa B/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Verduras/química
13.
J Hazard Mater ; 429: 128243, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093747

RESUMO

Per- and poly-fluoroalkyl substances (PFASs) are used extensively in a broad range of industrial applications and consumer products. While a few legacy PFASs have been voluntarily phased out, over 5000 PFASs have been produced as replacements for their predecessors. The potential endocrine disrupting hazards of most emerging PFASs have not been comprehensively investigated. In silico molecular docking to the human androgen receptor (hAR) combined with machine learning techniques were previously applied to 5206 PFASs and predicted 23 PFASs bind the hAR. Herein, the in silico results were validated in vitro for the five candidate AR ligands that were commercially available. Three manufactured PFASs namely (9-(nonafluorobutyl)- 2,3,6,7-tetrahydro-1 H,5 H,11 H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one (NON), 2-(heptafluoropropyl)- 3-phenylquinoxaline (HEP), and 2,2,3,3,4,4,5,5,5-nonafluoro-N-(4-nitrophenyl)pentanamide (NNN) elicited significant antiandrogenic effects at relatively low concentrations. We further investigated the mechanism of AR inhibition and found that all three PFASs inhibited AR transactivation induced by testosterone through a competitive binding mechanism. We then examined the antiandrogenic effects of these PFASs on AR expression and its responsive genes. Consistently, these PFASs significantly decreased the expression of PSA and FKBP5 and increased the expression of AR, similar to the effects elicited by a known competitive AR inhibitor, hydroxyflutamide. This suggests they are competitive antagonists of AR activity and western blot analysis revealed these PFASs decreased intracellular AR protein in androgen sensitive human prostate cancer cells. Hence, the findings presented here corroborate our published in silico approach and indicate these emerging PFASs may adversely affect the human endocrine system.


Assuntos
Disruptores Endócrinos , Fluorocarbonos , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/toxicidade , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Humanos , Masculino , Simulação de Acoplamento Molecular , Receptores Androgênicos/metabolismo
14.
Bioorg Med Chem Lett ; 21(12): 3583-6, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21576019

RESUMO

This structure-activity relationship study for neonicotinoids with an N-haloacetylimino pharmacophore identifies several candidate compounds showing outstanding insecticidal potency and consequently leads to establishing their molecular recognition at an insect nicotinic receptor structural model, wherein the neonicotinoid halogen atoms (fluorine, chlorine, bromine, and iodine) variously interact with the receptor loops C-D interfacial niche via H-bonding and/or hydrophobic interactions.


Assuntos
Anabasina/síntese química , Inseticidas/síntese química , Receptores Nicotínicos/metabolismo , Acetilação , Anabasina/química , Anabasina/farmacologia , Animais , Halogênios/síntese química , Halogênios/química , Halogênios/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Iminas/síntese química , Iminas/química , Iminas/farmacologia , Insetos/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 105(5): 1728-32, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18230720

RESUMO

The nicotinic acetylcholine (ACh) receptor (nAChR) plays a crucial role in excitatory neurotransmission and is an important target for drugs and insecticides. Diverse nAChR subtypes with various subunit combinations confer differential selectivity for nicotinic drugs. We investigated the subtype selectivity of nAChR agonists by comparing two ACh-binding proteins (AChBPs) as structural surrogates with distinct pharmacological profiles [i.e., Lymnaea stagnalis (Ls) AChBP of low neonicotinoid and high nicotinoid sensitivities and Aplysia californica (Ac) AChBP of high neonicotinoid sensitivity] mimicking vertebrate and insect nAChR subtypes, respectively. The structural basis of subtype selectivity was examined here by photoaffinity labeling. Two azidoneonicotinoid probes in the Ls-AChBP surprisingly modified two distinct and distant subunit interface sites: loop F Y164 of the complementary or (-)-face subunit and loop C Y192 of the principal or (+)-face subunit, whereas three azidonicotinoid probes derivatized only Y192. Both the neonicotinoid and nicotinoid probes labeled Ac-AChBP at only one position at the interface between loop C Y195 and loop E M116. These findings were used to establish structural models of the two AChBP subtypes. In the Ac-AChBP, the neonicotinoids and nicotinoids are nestled in similar bound conformations. Intriguingly, for the Ls-AChBP, the neonicotinoids have two bound conformations that are inverted relative to each other, whereas nicotinoids appear buried in only one conserved conformation as seen for the Ac-AChBP subtype. Accordingly, the subtype selectivity is based on two disparate bound conformations of nicotinic agonists, thereby establishing an atypical concept for neonicotinoid versus nicotinoid selectivity between insect and vertebrate nAChRs.


Assuntos
Agonistas Nicotínicos/química , Receptores Nicotínicos/química , Sequência de Aminoácidos , Animais , Aplysia/metabolismo , Sítios de Ligação , Humanos , Imidazóis/química , Lymnaea/metabolismo , Conformação Molecular , Dados de Sequência Molecular , Neonicotinoides , Nitrocompostos/química , Marcadores de Fotoafinidade/química , Conformação Proteica/efeitos dos fármacos , Piridinas/química , Tiazinas/química
16.
J Agric Food Chem ; 69(33): 9551-9556, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374535

RESUMO

A novel insecticide flupyrimin (FLP) with a trifluoroacetyl pharmacophore acts as an antagonist at the insect nicotinic acetylcholine receptor (nAChR). This investigation examines a hypothesis that the FLP C(O)CF3 moiety is primarily recognized by the ß subunit-face in the ligand-binding pocket (interface between α and ß subunits) of the insect nAChR. Accordingly, we evaluate the atomic interaction between a fluorine atom of FLP and the partnering amino acid side chain on the ß subunit employing a recombinant hybrid nAChR consisting of aphid Mpα2 and rat Rß2 subunits (with a mutation at T77 on the Rß2). The H-donating T77R, T77K, T77N, or T77Q nAChR enhances the FLP binding potency relative to that of the wild-type receptor, whereas the affinity of neonicotinoid imidaclprid (IMI) with a nitroguanidine pharmacophore remains unchanged. These results facilitate the establishment of the unique FLP molecular recognition at the Mpα2/Mpß1 interface structural model, thereby underscoring a distinction in its binding mechanism from IMI.


Assuntos
Afídeos , Inseticidas , Receptores Nicotínicos , Animais , Insetos , Neonicotinoides , Nitrocompostos , Ratos , Receptores Nicotínicos/genética
17.
Bioorg Med Chem Lett ; 20(19): 5933-5, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20729079

RESUMO

Substituted-phenoxycarbonylimino neonicotinoid ligands with an electron-donating group showed significantly higher affinity to the insect nicotinic receptor relative to that of the analogue with an electron-withdrawing substituent, thereby establishing in silico binding site interaction model featuring that the phenoxy ring of neonicotinoids and the receptor loop D tryptophan indole plane form a face-to-edge aromatic interaction.


Assuntos
Imidazóis/química , Proteínas de Insetos/química , Nitrocompostos/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Simulação por Computador , Proteínas de Insetos/metabolismo , Insetos , Inseticidas/síntese química , Inseticidas/química , Ligantes , Neonicotinoides , Piridinas/química , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade
18.
Chemosphere ; 257: 127178, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32505947

RESUMO

Hydraulic fracturing (HF) technology is increasingly utilized for oil and gas extraction operations. The widespread use of HF has led to concerns of negative impacts on both the environment and human health. Indeed, the potential endocrine disrupting impacts of HF chemicals is one such knowledge gap. Herein, we used structure-based molecular docking to assess the binding affinities of 60 HF chemicals to the human androgen receptor (AR). Five HF chemicals had relatively high predicted AR binding affinity, suggesting the potential for endocrine disruption. We next assessed androgenic and antiandrogenic activities of these chemicals in vitro. Of the five candidate AR ligands, only Genapol®X-100 significantly modified AR transactivation. To better understand the structural effect of Genapol®X-100 on the potency of AR inhibition, we compared the antiandrogenic activity of Genapol®X-100 with that of its structurally similar chemical, Genapol®X-080. Interestingly, both Genapol®X-100 and Genapol®X-080 elicited an antagonistic effect at AR with 20% relative inhibitory concentrations of 0.43 and 0.89 µM, respectively. Furthermore, we investigated the mechanism of AR inhibition of these two chemicals in vitro, and found that both Genapol®X-100 and Genapol®X-080 inhibited AR through a noncompetitive mechanism. The effect of these two chemicals on the expression of AR responsive genes, e.g. PSA, KLK2, and AR, was also investigated. Genapol®X-100 and Genapol®X-080 altered the expression of these genes. Our findings heighten awareness of endocrine disruption by HF chemicals and provide evidence that noncompetitive antiandrogenic Genapol®X-100 could cause adverse endocrine health effects.


Assuntos
Disruptores Endócrinos/toxicidade , Antagonistas de Androgênios/química , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios , Disruptores Endócrinos/química , Humanos , Fraturamento Hidráulico , Simulação de Acoplamento Molecular , Receptores Androgênicos/metabolismo
19.
Chem Res Toxicol ; 22(3): 476-82, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19178134

RESUMO

Molecular interactions of neonicotinoid insecticides with the nicotinic acetylcholine receptor have been mapped by chemical and structural neurobiology approaches, thereby encouraging the biorational design of novel nicotinic ligands. This investigation designs, prepares, and evaluates the target site potency of neonicotinoid analogues with various types of electronegative pharmacophores and subsequently predicts their molecular recognition in the ligand-binding pocket. The N-nitroimino (NNO2) neonicotinoid pharmacophore is systematically replaced by N-nitrosoimino (NNO), N-formylimino [NC(O)H], N-alkyl- and N-arylcarbonylimino [NC(O)R], and N-alkoxy- and N-aryloxycarbonylimino [NC(O)OR] variants. The NNO analogues essentially retain the binding affinity of the NNO2 compounds, while the isosteric NC(O)H congeners have diminished potency. The NC(O)R and NC(O)OR analogues, where R is methyl, trifluoromethyl, phenyl, or pyridin-3-yl, have moderate to high affinities. Orientation of the tip oxygen plays a critical role for binding of the NNO and NC(O)H pharmacophores, and the extended NC(O)R and NC(O)OR moieties are embraced by unique binding domains.


Assuntos
Proteínas de Insetos/química , Inseticidas/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Inseticidas/farmacologia , Ligantes , Modelos Moleculares , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 19(13): 3449-52, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19473841

RESUMO

The bis-pharmacophore approach applied to neonicotinoid insecticides reveals high binding affinity for heptamethylene bis-N(3),N(3')-imidacloprid fitting a nicotinic acetylcholine receptor model wherein the chloropyridine moieties contact loops E and F and the alkylene linker bridges these two distant domains.


Assuntos
Imidazóis/química , Inseticidas/química , Antagonistas Nicotínicos/química , Nitrocompostos/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Simulação por Computador , Drosophila , Imidazóis/síntese química , Inseticidas/síntese química , Neonicotinoides , Antagonistas Nicotínicos/síntese química , Nitrocompostos/síntese química , Ligação Proteica , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA