Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
EMBO J ; 42(24): e115030, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984335

RESUMO

Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.


Assuntos
Canais de Cloreto , Ativação do Canal Iônico , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Anoctamina-1/genética , Anoctamina-1/química , Anoctamina-1/metabolismo , Ligantes , Microscopia Crioeletrônica , Sítios de Ligação , Cálcio/metabolismo
2.
Nature ; 558(7709): 254-259, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769723

RESUMO

Volume-regulated anion channels are activated in response to hypotonic stress. These channels are composed of closely related paralogues of the leucine-rich repeat-containing protein 8 (LRRC8) family that co-assemble to form hexameric complexes. Here, using cryo-electron microscopy and X-ray crystallography, we determine the structure of a homomeric channel of the obligatory subunit LRRC8A. This protein conducts ions and has properties in common with endogenous heteromeric channels. Its modular structure consists of a transmembrane pore domain followed by a cytoplasmic leucine-rich repeat domain. The transmembrane domain, which is structurally related to connexin proteins, is wide towards the cytoplasm but constricted on the outside by a structural unit that acts as a selectivity filter. An excess of basic residues in the filter and throughout the pore attracts anions by electrostatic interaction. Our work reveals the previously unknown architecture of volume-regulated anion channels and their mechanism of selective anion conduction.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura , Animais , Membrana Celular/metabolismo , Conexinas/química , Cristalografia por Raios X , Citoplasma/metabolismo , Células HEK293 , Humanos , Proteínas de Repetições Ricas em Leucina , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade
3.
Nature ; 552(7685): 421-425, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236691

RESUMO

The calcium-activated chloride channel TMEM16A is a ligand-gated anion channel that opens in response to an increase in intracellular Ca2+ concentration. The protein is broadly expressed and contributes to diverse physiological processes, including transepithelial chloride transport and the control of electrical signalling in smooth muscles and certain neurons. As a member of the TMEM16 (or anoctamin) family of membrane proteins, TMEM16A is closely related to paralogues that function as scramblases, which facilitate the bidirectional movement of lipids across membranes. The unusual functional diversity of the TMEM16 family and the relationship between two seemingly incompatible transport mechanisms has been the focus of recent investigations. Previous breakthroughs were obtained from the X-ray structure of the lipid scramblase of the fungus Nectria haematococca (nhTMEM16), and from the cryo-electron microscopy structure of mouse TMEM16A at 6.6 Å (ref. 14). Although the latter structure disclosed the architectural differences that distinguish ion channels from lipid scramblases, its low resolution did not permit a detailed molecular description of the protein or provide any insight into its activation by Ca2+. Here we describe the structures of mouse TMEM16A at high resolution in the presence and absence of Ca2+. These structures reveal the differences between ligand-bound and ligand-free states of a calcium-activated chloride channel, and when combined with functional experiments suggest a mechanism for gating. During activation, the binding of Ca2+ to a site located within the transmembrane domain, in the vicinity of the pore, alters the electrostatic properties of the ion conduction path and triggers a conformational rearrangement of an α-helix that comes into physical contact with the bound ligand, and thereby directly couples ligand binding and pore opening. Our study describes a process that is unique among channel proteins, but one that is presumably general for both functional branches of the TMEM16 family.


Assuntos
Anoctamina-1/química , Anoctamina-1/ultraestrutura , Cálcio/química , Cálcio/farmacologia , Microscopia Crioeletrônica , Ativação do Canal Iônico/efeitos dos fármacos , Animais , Anoctamina-1/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Membrana Celular/metabolismo , Glicina/metabolismo , Transporte de Íons/efeitos dos fármacos , Ligantes , Camundongos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Eletricidade Estática
4.
Chimia (Aarau) ; 76(12): 1005-1010, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38069795

RESUMO

The SLC11/NRAMP proteins constitute a conserved family of metal ion transporters that are expressed in all kingdoms of life. In humans, the two paralogs DMT1 and NRMP1 play an important role in iron homeostasis and the defense against pathogens. SLC11 transporters have evolved an exquisite selectivity for transition metal ions, which facilitates their efficient transport from a large background of Ca2+ and Mg2+. This is accomplished by the evolution of a conserved binding site, which contains besides promiscuous hard ligands, a methionine acting as soft ligand that exclusively coordinates transition metals and thus contributes to the exclusion of alkaline earth metal ions. This site is altered in a branch of prokaryotic family members, which are capable of transporting Mg2+, where the removal of the coordinating methionine and the accompanying expansion of the binding pocket captures this small ion in a hydrated state. The disposition of titratable residues in H+-coupled transition metal ion transporters, that are absent in uncoupled Mg2+ transporters, sheds light on potential coupling mechanisms. In combination, the discussed work has revealed detailed insight into transition metal ion transport and provides a basis for the development of inhibitors of DMT1 as strategy against iron overload disorders.

5.
Nature ; 516(7530): 207-12, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25383531

RESUMO

The TMEM16 family of proteins, also known as anoctamins, features a remarkable functional diversity. This family contains the long sought-after Ca(2+)-activated chloride channels as well as lipid scramblases and cation channels. Here we present the crystal structure of a TMEM16 family member from the fungus Nectria haematococca that operates as a Ca(2+)-activated lipid scramblase. Each subunit of the homodimeric protein contains ten transmembrane helices and a hydrophilic membrane-traversing cavity that is exposed to the lipid bilayer as a potential site of catalysis. This cavity harbours a conserved Ca(2+)-binding site located within the hydrophobic core of the membrane. Mutations of residues involved in Ca(2+) coordination affect both lipid scrambling in N. haematococca TMEM16 and ion conduction in the Cl(-) channel TMEM16A. The structure reveals the general architecture of the family and its mode of Ca(2+) activation. It also provides insight into potential scrambling mechanisms and serves as a framework to unravel the conduction of ions in certain TMEM16 proteins.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Nectria/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Animais , Anoctamina-1 , Sítios de Ligação/genética , Cálcio/química , Cálcio/farmacologia , Canais de Cloreto/genética , Cristalografia por Raios X , Condutividade Elétrica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Transporte de Íons/efeitos dos fármacos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nectria/enzimologia , Nectria/genética , Proteínas de Neoplasias/química , Proteínas de Transferência de Fosfolipídeos/genética , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
6.
PLoS Biol ; 14(3): e1002393, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26943937

RESUMO

Pentameric ligand-gated ion channels are activated by the binding of agonists to a site distant from the ion conduction path. These membrane proteins consist of distinct ligand-binding and pore domains that interact via an extended interface. Here, we have investigated the role of residues at this interface for channel activation to define critical interactions that couple conformational changes between the two structural units. By characterizing point mutants of the prokaryotic channels ELIC and GLIC by electrophysiology, X-ray crystallography and isothermal titration calorimetry, we have identified conserved residues that, upon mutation, apparently prevent activation but not ligand binding. The positions of nonactivating mutants cluster at a loop within the extracellular domain connecting ß-strands 6 and 7 and at a loop joining the pore-forming helix M2 with M3 where they contribute to a densely packed core of the protein. An ionic interaction in the extracellular domain between the turn connecting ß-strands 1 and 2 and a residue at the end of ß-strand 10 stabilizes a state of the receptor with high affinity for agonists, whereas contacts of this turn to a conserved proline residue in the M2-M3 loop appear to be less important than previously anticipated. When mapping residues with strong functional phenotype on different channel structures, mutual distances are closer in conducting than in nonconducting conformations, consistent with a potential role of contacts in the stabilization of the open state. Our study has revealed a pattern of interactions that are crucial for the relay of conformational changes from the extracellular domain to the pore region of prokaryotic pentameric ligand-gated ion channels. Due to the strong conservation of the interface, these results are relevant for the entire family.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Animais , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Transdução de Sinais , Xenopus laevis
7.
Biochemistry ; 56(30): 3962-3971, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28731329

RESUMO

The uptake of glutamate by synaptic vesicles is mediated by vesicular glutamate transporters (VGLUTs). The central role of these transporters in excitatory neurotransmission underpins their importance as pharmacological targets. Although several compounds inhibit VGLUTs, highly specific inhibitors were so far unavailable, thus limiting applications to in vitro experiments. Besides their potential in pharmacology, specific inhibitors would also be beneficial for the elucidation of transport mechanisms. To overcome this shortage, we generated nanobodies (Nbs) by immunization of a llama with purified rat VGLUT1 and subsequent selection of binders from a phage display library. All identified Nbs recognize cytosolic epitopes, and two of the binders greatly reduced the rate of uptake of glutamate by reconstituted liposomes and subcellular fractions enriched with synaptic vesicles. These Nbs can be expressed as functional green fluorescent protein fusion proteins in the cytosol of HEK cells for intracellular applications as immunocytochemical and biochemical agents. The selected binders thus provide valuable tools for cell biology and neuroscience.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Modelos Moleculares , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/antagonistas & inibidores , Animais , Transporte Biológico/efeitos dos fármacos , Camelídeos Americanos , Células Cultivadas , Depressores do Sistema Nervoso Central/química , Depressores do Sistema Nervoso Central/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Embrião de Mamíferos/citologia , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Biblioteca de Peptídeos , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/química , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
8.
PLoS Biol ; 10(11): e1001429, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185134

RESUMO

The modulation of pentameric ligand-gated ion channels (pLGICs) by divalent cations is believed to play an important role in their regulation in a physiological context. Ions such as calcium or zinc influence the activity of pLGIC neurotransmitter receptors by binding to their extracellular domain and either potentiate or inhibit channel activation. Here we have investigated by electrophysiology and X-ray crystallography the effect of divalent ions on ELIC, a close prokaryotic pLGIC homologue of known structure. We found that divalent cations inhibit the activation of ELIC by the agonist cysteamine, reducing both its potency and, at higher concentrations, its maximum response. Crystal structures of the channel in complex with barium reveal the presence of several distinct binding sites. By mutagenesis we confirmed that the site responsible for divalent inhibition is located at the outer rim of the extracellular domain, at the interface between adjacent subunits but at some distance from the agonist binding region. Here, divalent cations interact with the protein via carboxylate side-chains, and the site is similar in structure to calcium binding sites described in other proteins. There is evidence that other pLGICs may be regulated by divalent ions binding to a similar region, even though the interacting residues are not conserved within the family. Our study provides structural and functional insight into the allosteric regulation of ELIC and is of potential relevance for the entire family.


Assuntos
Cátions Bivalentes/química , Ativação do Canal Iônico , Canais Iônicos de Abertura Ativada por Ligante/antagonistas & inibidores , Células Procarióticas/química , Acetilcolina/química , Regulação Alostérica , Sequência de Aminoácidos , Animais , Bário/química , Sítios de Ligação , Cálcio/química , Membrana Celular/química , Membrana Celular/fisiologia , Clonagem Molecular , Cristalografia por Raios X , Cisteamina/química , Fenômenos Eletrofisiológicos , Escherichia coli/química , Escherichia coli/genética , Células HEK293 , Humanos , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp/métodos , Células Procarióticas/fisiologia , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Xenopus laevis/fisiologia , Zinco/química
9.
Nature ; 457(7225): 115-8, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18987630

RESUMO

The X-ray structure of a pentameric ligand-gated ion channel from Erwinia chrysanthemi (ELIC) has recently provided structural insight into this family of ion channels at high resolution. The structure shows a homo-pentameric protein with a barrel-stave architecture that defines an ion-conduction pore located on the fivefold axis of symmetry. In this structure, the wide aqueous vestibule that is encircled by the extracellular ligand-binding domains of the five subunits narrows to a discontinuous pore that spans the lipid bilayer. The pore is constricted by bulky hydrophobic residues towards the extracellular side, which probably serve as barriers that prevent the diffusion of ions. This interrupted pore architecture in ELIC thus depicts a non-conducting conformation of a pentameric ligand-gated ion channel, the thermodynamically stable state in the absence of bound ligand. As ligand binding promotes pore opening in these ion channels and the specific ligand for ELIC has not yet been identified, we have turned our attention towards a homologous protein from the cyanobacterium Gloebacter violaceus (GLIC). GLIC was shown to form proton-gated channels that are activated by a pH decrease on the extracellular side and that do not desensitize after activation. Both prokaryotic proteins, ELIC and GLIC form ion channels that are selective for cations over anions with poor discrimination among monovalent cations, characteristics that resemble the conduction properties of the cation-selective branch of the family that includes acetylcholine and serotonin receptors. Here we present the X-ray structure of GLIC at 3.1 A resolution. The structure reveals a conformation of the channel that is distinct from ELIC and that probably resembles the open state. In combination, both structures suggest a novel gating mechanism for pentameric ligand-gated ion channels where channel opening proceeds by a change in the tilt of the pore-forming helices.


Assuntos
Cianobactérias/química , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Prótons , Cristalografia por Raios X , Dickeya chrysanthemi/química , Canais Iônicos/genética , Íons/metabolismo , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
10.
PLoS Biol ; 9(6): e1001101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21713033

RESUMO

While the pentameric ligand-gated ion channel ELIC has recently provided first insight into the architecture of the family at high resolution, its detailed investigation was so far prevented by the fact that activating ligands were unknown. Here we describe a study on the functional characterization of ELIC by electrophysiology and X-ray crystallography. ELIC is activated by a class of primary amines that include the neurotransmitter GABA at high micro- to millimolar concentrations. The ligands bind to a conserved site and evoke currents that slowly desensitize over time. The protein forms cation selective channels with properties that resemble the nicotinic acetylcholine receptor. The high single channel conductance and the comparably simple functional behavior make ELIC an attractive model system to study general mechanisms of ion conduction and gating in this important family of neurotransmitter receptors.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Cristalografia por Raios X , Dickeya chrysanthemi/química , Ativação do Canal Iônico/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/efeitos dos fármacos , Ligantes , Modelos Biológicos , Modelos Moleculares
11.
Nature ; 452(7185): 375-9, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18322461

RESUMO

Pentameric ligand-gated ion channels (pLGICs) are key players in the early events of electrical signal transduction at chemical synapses. The family codes for a structurally conserved scaffold of channel proteins that open in response to the binding of neurotransmitter molecules. All proteins share a pentameric organization of identical or related subunits that consist of an extracellular ligand-binding domain followed by a transmembrane channel domain. The nicotinic acetylcholine receptor (nAChR) is the most thoroughly studied member of the pLGIC family (for recent reviews see refs 1-3). Two sources of structural information provided an architectural framework for the family. The structure of the soluble acetylcholine-binding protein (AChBP) defined the organization of the extracellular domain and revealed the chemical basis of ligand interaction. Electron microscopy studies of the nAChR from Torpedo electric ray have yielded a picture of the full-length protein and have recently led to the interpretation of an electron density map at 4.0 A resolution. Despite the wealth of experimental information, high-resolution structures of any family member have so far not been available. Until recently, the pLGICs were believed to be only expressed in multicellular eukaryotic organisms. The abundance of prokaryotic genome sequences, however, allowed the identification of several homologous proteins in bacterial sources. Here we present the X-ray structure of a prokaryotic pLGIC from the bacterium Erwinia chrysanthemi (ELIC) at 3.3 A resolution. Our study reveals the first structure of a pLGIC at high resolution and provides an important model system for the investigation of the general mechanisms of ion permeation and gating within the family.


Assuntos
Dickeya chrysanthemi/química , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Secundária de Proteína , Eletricidade Estática
12.
Elife ; 132024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896440

RESUMO

The CALHM proteins constitute a family of large pore channels that contains six closely related paralogs in humans. Two family members, CALHM1 and 3, have been associated with the release of ATP during taste sensation. Both proteins form heteromeric channels that activate at positive potential and decreased extracellular Ca2+ concentration. Although the structures of several family members displayed large oligomeric organizations of different size, their function has in most cases remained elusive. Our previous study has identified the paralogs CALHM2, 4 and, 6 to be highly expressed in the placenta and defined their structural properties as membrane proteins exhibiting features of large pore channels with unknown activation properties (Drozdzyk et al., 2020). Here, we investigated whether these placental paralogs would form heteromers and characterized heteromeric complexes consisting of CALHM2 and CALHM4 subunits using specific binders as fiducial markers. Both proteins assemble with different stoichiometries with the largest population containing CALHM2 as the predominant component. In these oligomers, the subunits segregate and reside in their preferred conformation found in homomeric channels. Our study has thus revealed the properties that govern the formation of CALHM heteromers in a process of potential relevance in a cellular context.


Assuntos
Multimerização Proteica , Feminino , Humanos , Canais de Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Células HEK293 , Placenta/metabolismo , Conformação Proteica
13.
Nat Struct Mol Biol ; 30(1): 52-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522427

RESUMO

Volume-regulated anion channels (VRACs) participate in the cellular response to osmotic swelling. These membrane proteins consist of heteromeric assemblies of LRRC8 subunits, whose compositions determine permeation properties. Although structures of the obligatory LRRC8A, also referred to as SWELL1, have previously defined the architecture of VRACs, the organization of heteromeric channels has remained elusive. Here we have addressed this question by the structural characterization of murine LRRC8A/C channels. Like LRRC8A, these proteins assemble as hexamers. Despite 12 possible arrangements, we find a predominant organization with an A:C ratio of two. In this assembly, four LRRC8A subunits cluster in their preferred conformation observed in homomers, as pairs of closely interacting proteins that stabilize a closed state of the channel. In contrast, the two interacting LRRC8C subunits show a larger flexibility, underlining their role in the destabilization of the tightly packed A subunits, thereby enhancing the activation properties of the protein.


Assuntos
Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Ânions/metabolismo
14.
Elife ; 122023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351578

RESUMO

Members of the SLC26 family constitute a conserved class of anion transport proteins, which encompasses uncoupled transporters with channel-like properties, coupled exchangers and motor proteins. Among the 10 functional paralogs in humans, several participate in the secretion of bicarbonate in exchange with chloride and thus play an important role in maintaining pH homeostasis. Previously, we have elucidated the structure of murine SLC26A9 and defined its function as an uncoupled chloride transporter (Walter et al., 2019). Here we have determined the structure of the closely related human transporter SLC26A6 and characterized it as a coupled exchanger of chloride with bicarbonate and presumably also oxalate. The structure defines an inward-facing conformation of the protein that generally resembles known structures of SLC26A9. The altered anion selectivity between both paralogs is a consequence of a remodeled ion binding site located in the center of a mobile unit of the membrane-inserted domain, which also accounts for differences in the coupling mechanism.


Assuntos
Antiporters , Bicarbonatos , Humanos , Animais , Camundongos , Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Sulfato/genética
15.
Elife ; 122023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943194

RESUMO

A central regulatory mechanism of iron homeostasis in humans involves ferroportin (FPN), the sole cellular iron exporter, and the peptide hormone hepcidin, which inhibits Fe2+ transport and induces internalization and degradation of FPN. Dysregulation of the FPN/hepcidin axis leads to diverse pathological conditions, and consequently, pharmacological compounds that inhibit FPN-mediated iron transport are of high clinical interest. Here, we describe the cryo-electron microscopy structures of human FPN in complex with synthetic nanobodies and vamifeport (VIT-2763), the first clinical-stage oral FPN inhibitor. Vamifeport competes with hepcidin for FPN binding and is currently in clinical development for ß-thalassemia and sickle cell disease. The structures display two distinct conformations of FPN, representing outward-facing and occluded states of the transporter. The vamifeport site is located in the center of the protein, where the overlap with hepcidin interactions underlies the competitive relationship between the two molecules. The introduction of point mutations in the binding pocket of vamifeport reduces its affinity to FPN, emphasizing the relevance of the structural data. Together, our study reveals conformational rearrangements of FPN that are of potential relevance for transport, and it provides initial insight into the pharmacological targeting of this unique iron efflux transporter.


Assuntos
Proteínas de Transporte de Cátions , Hepcidinas , Humanos , Hepcidinas/metabolismo , Microscopia Crioeletrônica , Ferro/metabolismo , Proteínas de Transporte de Cátions/metabolismo
16.
Elife ; 122023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074929

RESUMO

The transport of transition metal ions by members of the SLC11/NRAMP family constitutes a ubiquitous mechanism for the uptake of Fe2+ and Mn2+ across all kingdoms of life. Despite the strong conservation of the family, two of its branches have evolved a distinct substrate preference with one mediating Mg2+ uptake in prokaryotes and another the transport of Al3+ into plant cells. Our previous work on the SLC11 transporter from Eggerthella lenta revealed the basis for its Mg2+ selectivity (Ramanadane et al., 2022). Here, we have addressed the structural and functional properties of a putative Al3+ transporter from Setaria italica. We show that the protein transports diverse divalent metal ions and binds the trivalent ions Al3+ and Ga3+, which are both presumable substrates. Its cryo-electron microscopy (cryo-EM) structure displays an occluded conformation that is closer to an inward- than an outward-facing state, with a binding site that is remodeled to accommodate the increased charge density of its transported substrate.


Assuntos
Alumínio , Proteínas de Membrana Transportadoras , Alumínio/metabolismo , Microscopia Crioeletrônica , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Sítios de Ligação
17.
Nat Struct Mol Biol ; 14(1): 60-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17195847

RESUMO

The ubiquitous CBS domains, which are found as part of cytoplasmic domains in the ClC family of chloride channels and transporters, have previously been identified as building blocks for regulatory nucleotide-binding sites. Here we report the structures of the cytoplasmic domain of the human transporter ClC-5 in complex with ATP and ADP. The nucleotides bind to a specific site in the protein. As determined by equilibrium dialysis, the affinities for ATP, ADP and AMP are in the high micromolar range. Point mutations that interfere with nucleotide binding change the transport behavior of a ClC-5 mutant expressed in Xenopus laevis oocytes. Our results establish the structural and energetic basis for the interaction of ClC-5 with nucleotides and provide a framework for future investigations.


Assuntos
Nucleotídeos de Adenina/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais de Cloreto/genética , Cristalografia por Raios X , Metabolismo Energético , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Oócitos , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , Xenopus laevis
18.
Curr Opin Struct Biol ; 74: 102382, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504105

RESUMO

Members of the LRRC8 family participate in the response of vertebrate cells to osmotic changes in their environment. These proteins form heteromeric assemblies composed of the obligatory subunit LRRC8A and at least one of the other four homologs, which together function as anion-selective channels with distinct properties that are activated upon cell-swelling. The hexameric complexes share a conserved architecture consisting of a membrane-inserted pore domain with an ion permeation path located at the axis of symmetry and cytoplasmic leucine-rich repeat domains that regulate the open probability of the channel. In this review, we summarize the current understanding of structure-function relationships of these unusual ion channels whose mechanisms are, despite their large physiological importance, still poorly understood.


Assuntos
Canais Iônicos , Proteínas de Membrana , Ânions/metabolismo , Tamanho Celular , Canais Iônicos/metabolismo , Proteínas de Membrana/química , Domínios Proteicos
19.
Nat Commun ; 13(1): 2798, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589730

RESUMO

TMEM16A, a calcium-activated chloride channel involved in multiple cellular processes, is a proposed target for diseases such as hypertension, asthma, and cystic fibrosis. Despite these therapeutic promises, its pharmacology remains poorly understood. Here, we present a cryo-EM structure of TMEM16A in complex with the channel blocker 1PBC and a detailed functional analysis of its inhibition mechanism. A pocket located external to the neck region of the hourglass-shaped pore is responsible for open-channel block by 1PBC and presumably also by its structural analogs. The binding of the blocker stabilizes an open-like conformation of the channel that involves a rearrangement of several pore helices. The expansion of the outer pore enhances blocker sensitivity and enables 1PBC to bind at a site within the transmembrane electric field. Our results define the mechanism of inhibition and gating and will facilitate the design of new, potent TMEM16A modulators.


Assuntos
Cálcio , Canais de Cloreto , Anoctamina-1/genética , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo
20.
Elife ; 112022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35001872

RESUMO

Members of the ubiquitous SLC11/NRAMP family catalyze the uptake of divalent transition metal ions into cells. They have evolved to efficiently select these trace elements from a large pool of Ca2+ and Mg2+, which are both orders of magnitude more abundant, and to concentrate them in the cytoplasm aided by the cotransport of H+ serving as energy source. In the present study, we have characterized a member of a distant clade of the family found in prokaryotes, termed NRMTs, that were proposed to function as transporters of Mg2+. The protein transports Mg2+ and Mn2+ but not Ca2+ by a mechanism that is not coupled to H+. Structures determined by cryo-EM and X-ray crystallography revealed a generally similar protein architecture compared to classical NRAMPs, with a restructured ion binding site whose increased volume provides suitable interactions with ions that likely have retained much of their hydration shell.


Assuntos
Bactérias/genética , Proteínas de Transporte de Cátions/genética , Magnésio/metabolismo , Bactérias/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA