Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829893

RESUMO

Asexual replication of Plasmodium falciparum occurs via schizogony, wherein 16-36 daughter cells are produced within the parasite during one semi-synchronized cytokinetic event. Schizogony requires a divergent contractile ring structure known as the basal complex. Our lab has previously identified PfMyoJ (PF3D7_1229800) and PfSLACR (PF3D7_0214700) as basal complex proteins recruited midway through segmentation. Using ultrastructure expansion microscopy, we localized both proteins to a novel basal complex subcompartment. While both colocalize with the basal complex protein PfCINCH upon recruitment, they form a separate, more basal subcompartment termed the posterior cup during contraction. We also show that PfSLACR is recruited to the basal complex prior to PfMyoJ, and that both proteins are removed unevenly as segmentation concludes. Using live-cell microscopy, we show that actin dynamics are dispensable for basal complex formation, expansion, and contraction. We then show that EF-hand containing P. falciparum Centrin 2 partially localizes to this posterior cup of the basal complex and that it is essential for growth and replication, with variable defects in basal complex contraction and synchrony. Finally, we demonstrate that free intracellular calcium is necessary but not sufficient for basal complex contraction in P. falciparum. Thus, we demonstrate dynamic spatial compartmentalization of the Plasmodium falciparum basal complex, identify an additional basal complex protein, and begin to elucidate the unique mechanism of contraction utilized by P. falciparum, opening the door for further exploration of Apicomplexan cellular division.


Assuntos
Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/fisiologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo , Humanos , Eritrócitos/parasitologia
2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464281

RESUMO

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites is yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites.

3.
mBio ; 15(5): e0285023, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564676

RESUMO

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Assuntos
Adenosina Trifosfatases , Divisão do Núcleo Celular , Proteínas de Ligação a DNA , Mitose , Plasmodium falciparum , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Eritrócitos/parasitologia , Técnicas de Inativação de Genes , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Divisão do Núcleo Celular/genética
4.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559241

RESUMO

Dynamins, or dynamin-related proteins (DRPs), are large mechano-sensitive GTPases mediating membrane dynamics or organellar fission/fusion events. Plasmodium falciparum encodes three dynamin-like proteins whose functions are poorly understood. Here, we demonstrate that PfDyn2 mediates both apicoplast and mitochondrial fission. Using super-resolution and ultrastructure expansion microscopy, we show that PfDyn2 is expressed in the schizont stage and localizes to both the apicoplast and mitochondria. Super-resolution long-term live cell microscopy shows that PfDyn2-deficient parasites cannot complete cytokinesis because the apicoplast and mitochondria do not undergo fission. Further, the basal complex or cytokinetic ring in Plasmodium cannot fully contract upon PfDyn2 depletion, a phenotype secondary to physical blockage of undivided organelles in the middle of the ring. Our data suggest that organellar fission defects result in aberrant schizogony, generating unsuccessful merozoites. The unique biology of PfDyn2, mediating both apicoplast and mitochondrial fission, has not been observed in other organisms possessing two endosymbiotic organelles. Highlights: PfDyn2 is essential for schizont-stage development.PfDyn2 mediates both apicoplast and mitochondrial fission.Deficiency of PfDyn2 leads to organellar fission failures and blockage of basal complex contraction.Addition of apicoplast-derived metabolite IPP does not rescue the growth defects.

5.
Nat Microbiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977907

RESUMO

Examining host-pathogen interactions in animals can capture aspects of infection that are obscured in cell culture. Using CRISPR-based screens, we functionally profile the entire genome of the apicomplexan parasite Toxoplasma gondii during murine infection. Barcoded gRNAs enabled bottleneck detection and mapping of population structures within parasite lineages. Over 300 genes with previously unknown roles in infection were found to modulate parasite fitness in mice. Candidates span multiple axes of host-parasite interaction. Rhoptry Apical Surface Protein 1 was characterized as a mediator of host-cell tropism that facilitates repeated invasion attempts. GTP cyclohydrolase I was also required for fitness in mice and druggable through a repurposed compound, 2,4-diamino-6-hydroxypyrimidine. This compound synergized with pyrimethamine against T. gondii and malaria-causing Plasmodium falciparum parasites. This work represents a complete survey of an apicomplexan genome during infection of an animal host and points to novel interfaces of host-parasite interaction.

6.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187525

RESUMO

Artemisinin (ART) combination therapies have been critical in reducing malaria morbidity and mortality, but these important drugs are threatened by growing resistance associated with mutations in Pfcoronin and Pfkelch13 . Here, we describe the mechanism of Pfcoronin -mediated ART resistance. Pf Coronin interacts with Pf Actin and localizes to the parasite plasma membrane (PPM), the digestive vacuole (DV) membrane, and membrane of a newly identified preDV compartment-all structures involved in the trafficking of hemoglobin from the RBC for degradation in the DV. Pfcoronin mutations alter Pf Actin homeostasis and impair the development and morphology of the preDV. Ultimately, these changes are associated with decreased uptake of red blood cell cytosolic contents by ring-stage Plasmodium falciparum . Previous work has identified decreased hemoglobin uptake as the mechanism of Pfkelch 13-mediated ART resistance. This work demonstrates that Pf Coronin appears to act via a parallel pathway. For both Pfkelch13 -mediated and Pfcoronin -mediated ART resistance, we hypothesize that the decreased hemoglobin uptake in ring stage parasites results in less heme-based activation of the artemisinin endoperoxide ring and reduced cytocidal activity. This study deepens our understanding of ART resistance, as well as hemoglobin uptake and development of the DV in early-stage parasites.

7.
Elife ; 122023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108809

RESUMO

Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample by ~4.5×. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have cataloged 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.


Assuntos
Apicoplastos , Ascomicetos , Malária Falciparum , Humanos , Plasmodium falciparum , Microscopia , Placa Amiloide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA