Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652493

RESUMO

GreA is a well-characterized transcriptional factor that acts primarily by rescuing stalled RNA polymerase complexes, but has also been shown to be the major transcriptional fidelity and proofreading factor, while it inhibits DNA break repair. Regulation of greA gene expression itself is still not well understood. So far, it has been shown that its expression is driven by two overlapping promoters and that greA leader encodes a small RNA (GraL) that is acting in trans on nudE mRNA. It has been also shown that GreA autoinhibits its own expression in vivo. Here, we decided to investigate the inner workings of this autoregulatory loop. Transcriptional fusions with lacZ reporter carrying different modifications (made both to the greA promoter and leader regions) were made to pinpoint the sequences responsible for this autoregulation, while GraL levels were also monitored. Our data indicate that GreA mediated regulation of its own gene expression is dependent on GraL acting in cis (a rare example of dual-action sRNA), rather than on the promoter region. However, a yet unidentified, additional factor seems to participate in this regulation as well. Overall, the GreA/GraL regulatory loop seems to have unique but hard to classify properties.


Assuntos
Proteínas de Escherichia coli/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/genética , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/metabolismo
2.
Postepy Biochem ; 64(1): 1-8, 2018 Jun 30.
Artigo em Polonês | MEDLINE | ID: mdl-30652831

RESUMO

About 50 years ago, "magic spots" - mediators of the bacterial stringent response, were discovered and were later identified as guanosine tetra- and pentaphosphate (ppGpp and pppGpp, jointly referred to as (p)ppGpp). At first, it seemed that stringent response is associated only with bacterial response to amino acid starvation, however, it soon turned out that (p)ppGpp is synthesized in response to other stresses as well. The mentioned alarmones are found to exist in all known bacterial species, as well as in plants. In recent years, a significant progress has been made in research on (p)ppGpp metabolism. It is also known that the stringent response affects many cellular processes, among which its effect on transcription is the best characterized. Moreover, (p)ppGpp is involved in the DNA repair pathway associated with transcription. In addition, the stringent response inhibits cell division, mainly by hindering DNA replication. (p)ppGpp is also of significant medical importance - it is necessary for virulence of many bacterial species and for turning them into persisters, i.e. cells which have elevated tolerance to many antibiotics.


Assuntos
Bactérias/metabolismo , Guanosina Pentafosfato/história , Guanosina Pentafosfato/metabolismo , Aniversários e Eventos Especiais , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Divisão Celular , Replicação do DNA , Resistência Microbiana a Medicamentos/efeitos dos fármacos , História do Século XX , História do Século XXI
3.
J Appl Genet ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709457

RESUMO

RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His8-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σD, σE, σS, and σN. Final step modification was required for σF, while for σH and σFecI, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.

4.
Front Microbiol ; 11: 581271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193211

RESUMO

The Mesh1 class of hydrolases found in bacteria, metazoans and humans was discovered as able to cleave an intact pyrophosphate residue esterified on the 3'hydroxyl of (p)ppGpp in a Mn2+ dependent reaction. Here, thin layer chromatography (TLC) qualitative evidence is presented indicating the substrate specificity of Mesh1 from Drosophila melanogaster and human MESH1 also extends to the (p)ppApp purine analogs. More importantly, we developed real time enzymatic assays, coupling ppNpp hydrolysis to NADH oxidation and pppNpp hydrolysis to NADP+ reduction, which facilitate estimation of kinetic constants. Furthermore, by using this assay technique we confirmed TLC observations and also revealed that purified small alarmone hydrolase (SAHMex) from Methylobacterium extorquens displays a strong hydrolase activity toward (p)ppApp but only negligible activity toward (p)ppGpp. In contrast, the substrate specificity of the hydrolase present in catalytically active N-terminal domain of the RSH protein from Streptococcus equisimilis (RelSeq) includes (p)ppGpp but not (p)ppApp. It is noteworthy that the RSH protein from M. extorquens (RSHMex) has been recently shown to synthesize both (p)ppApp and (p)ppGpp.

5.
Acta Biochim Pol ; 65(1): 141-149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29529101

RESUMO

Small RNA are very important post-transcriptional regulators in both, bacteria and eukaryotes. One of such sRNA is GraL, encoded in the greA leader region and conserved among enteric bacteria. Here, we conducted a bioinformatics search for GraL's targets in trans and validated our findings in vivo by constructing fusions of probable targets with lacZ and measuring their activity when GraL was overexpressed. Only one target's activity (nudE) decreased under those conditions and was thus selected for further analysis. In the absence of GraL and greA, the nudE::lacZ fusion's ß-galactosidase activity was increased. However, a similar effect was also visible in the strain deleted only for greA. Furthermore, overproduction of GreA alone increased the nudE::lacZ fusion's activity as well. This suggests existence of complex regulatory loop-like interactions between GreA, GraL and nudE mRNA. To further dissect this relationship, we performed in vitro EMSA experiments employing GraL and nudE mRNA. However, stable GraL-nudE complexes were not detected, even though the detectable amount of unbound GraL decreased as increasing amounts of nudE mRNA were added. Interestingly, GraL is being bound by Hfq, but nudE easily displaces it. We also conducted a search for genes that are synthetic lethal when deleted along with GraL. This revealed 40 genes that are rendered essential by GraL deletion, however, they are involved in many different cellular processes and no clear correlation was found. The obtained data suggest that GraL's mechanism of action is non-canonical, unique and requires further research.


Assuntos
Escherichia coli/genética , RNA Bacteriano/fisiologia , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Fatores de Transcrição/genética
6.
Biochim Biophys Acta Gene Regul Mech ; 1861(8): 731-742, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30012465

RESUMO

Precise regulation of gene expression is crucial for bacteria to respond to changing environmental conditions. In addition to protein factors affecting RNA polymerase (RNAP) activity, second messengers play an important role in transcription regulation, such as well-known effectors of the stringent response: guanosine 5'triphosphate-3'diphosphate and guanosine 3', 5'-bis(diphosphate) [(p)ppGpp]. Although much is known about importance of the 5' and 3' moieties of (p)ppGpp, the role of the guanine base remains somewhat cryptic. Here, we use (p)ppGpp's adenine analogs [(p)ppApp] to investigate how the nucleobase contributes to determine its binding site and transcriptional regulation. We determined X-ray crystal structure of Escherichia coli RNAP-(p)ppApp complex, which shows the analogs bind near the active site and switch regions of RNAP. We have also explored the regulatory effects of (p)ppApp on transcription initiating from the well-studied E. coli rrnB P1 promoter to assess and compare properties of (p)ppApp with (p)ppGpp. We demonstrate that contrary to (p)ppGpp, (p)ppApp activates transcription at this promoter and DksA hinders this effect. Moreover, pppApp exerts a stronger effect than ppApp. We also show that when ppGpp and pppApp are present together, the outcome depends on which one of them was pre-incubated with RNAP first. This behavior suggests a surprising Yin-Yang like reciprocal plasticity of RNAP responses at a single promoter, occasioned simply by pre-exposure to one or the other nucleotide. Our observations underscore the importance of the (p)ppNpp's purine nucleobase for interactions with RNAP, which may lead to a better fundamental understanding of (p)ppGpp regulation of RNAP activity.


Assuntos
Nucleotídeos de Adenina/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ativação Transcricional , Nucleotídeos de Adenina/metabolismo , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Guanosina Pentafosfato/química , Guanosina Pentafosfato/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA