Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Acta Neuropathol ; 137(3): 487-500, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604225

RESUMO

A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in Drosophila neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the Drosophila brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult Drosophila neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing Drosophila to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in C9orf72 repeat-induced neurodegeneration and identify eIF1A as a novel modifier of C9orf72 repeat toxicity.


Assuntos
Proteína C9orf72/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Proteína C9orf72/genética , Expansão das Repetições de DNA , Dipeptídeos/metabolismo , Drosophila , Demência Frontotemporal/genética , Humanos
2.
Neurobiol Aging ; 132: 154-174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837732

RESUMO

Amyloid ß (Aß) accumulation is a hallmark of Alzheimer's disease. In adult Drosophila brains, human Aß overexpression harms climbing and lifespan. It's uncertain whether Aß is intrinsically toxic or activates downstream neurodegeneration pathways. Our study uncovers a novel protective role against Aß toxicity: intra-endoplasmic reticulum (ER) protein accumulation with a focus on laminin and collagen subunits. Despite high Aß, laminin B1 (LanB1) overexpression robustly counters toxicity, suggesting a potential Aß resistance mechanism. Other laminin subunits and collagen IV also alleviate Aß toxicity; combining them with LanB1 augments the effect. Imaging reveals ER retention of LanB1 without altering Aß secretion. LanB1's rescue function operates independently of the IRE1α/XBP1 ER stress response. ER-targeted GFP overexpression also mitigates Aß toxicity, highlighting broader ER protein retention advantages. Proof-of-principle tests in murine hippocampal slices using mouse Lamb1 demonstrate ER retention in transduced cells, indicating a conserved mechanism. Though ER protein retention generally harms, it could paradoxically counter neuronal Aß toxicity, offering a new therapeutic avenue for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Humanos , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Drosophila , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Endorribonucleases/metabolismo , Laminina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Colágeno/metabolismo
3.
Curr Biol ; 28(11): 1714-1724.e4, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29779873

RESUMO

Intermittent fasting (IF) can improve function and health during aging in laboratory model organisms, but the mechanisms at work await elucidation. We subjected fruit flies (Drosophila melanogaster) to varying degrees of IF and found that just one month of a 2-day fed:5-day fasted IF regime at the beginning of adulthood was sufficient to extend lifespan. This long-lasting, beneficial effect of early IF was not due to reduced fecundity. Starvation resistance and resistance to oxidative and xenobiotic stress were increased after IF. Early-life IF also led to higher lipid content in 60-day-old flies, a potential explanation for increased longevity. Guts of flies 40 days post-IF showed a significant reduction in age-related pathologies and improved gut barrier function. Improved gut health was also associated with reduced relative bacterial abundance. Early IF thus induced profound long-term changes. Pharmacological and genetic epistasis analysis showed that IF acted independently of the TOR pathway because rapamycin and IF acted additively to extend lifespan, and global expression of a constitutively active S6K did not attenuate the IF-induced lifespan extension. We conclude that short-term IF during early life can induce long-lasting beneficial effects, with robust increase in lifespan in a TOR-independent manner, probably at least in part by preserving gut health.


Assuntos
Drosophila melanogaster/fisiologia , Privação de Alimentos , Longevidade , Transdução de Sinais/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Comportamento Alimentar , Feminino , Trato Gastrointestinal/fisiologia , Masculino , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
4.
Cell Rep ; 21(3): 641-653, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045833

RESUMO

Reduced activity of nutrient-sensing signaling networks can extend organismal lifespan, yet the underlying biology remains unclear. We show that the anti-aging effects of rapamycin and reduced intestinal insulin/insulin growth factor (IGF) signaling (IIS) require the Drosophila FoxA transcription factor homolog Fork Head (FKH). Intestinal FKH induction extends lifespan, highlighting a role for the gut. FKH binds to and is phosphorylated by AKT and Target of Rapamycin. Gut-specific FKH upregulation improves gut barrier function in aged flies. Additionally, it increases the expression of nutrient transporters, as does lowered IIS. Evolutionary conservation of this effect of lowered IIS is suggested by the upregulation of related nutrient transporters in insulin receptor substrate 1 knockout mouse intestine. Our study highlights a critical role played by FKH in the gut in mediating anti-aging effects of reduced IIS. Malnutrition caused by poor intestinal absorption is a major problem in the elderly, and a better understanding of the mechanisms involved will have important therapeutic implications for human aging.


Assuntos
Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Alimentos , Fatores de Transcrição Forkhead/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Longevidade , Proteínas Nucleares/metabolismo , Animais , Restrição Calórica , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Feminino , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Absorção Intestinal/efeitos dos fármacos , Intestinos/citologia , Longevidade/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Somatomedinas/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA