Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 602(7896): 307-313, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937050

RESUMO

Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Replicação Viral , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Animais de Laboratório/virologia , COVID-19/veterinária , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Humanos , Masculino , Mesocricetus/virologia , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência/genética
2.
Nature ; 592(7852): 122-127, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636719

RESUMO

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Mutação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Brônquios/citologia , Brônquios/virologia , COVID-19/epidemiologia , Linhagem Celular , Células Cultivadas , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Aptidão Genética , Humanos , Masculino , Mesocricetus , Camundongos , Mucosa Nasal/citologia , Mucosa Nasal/virologia , Ligação Proteica , RNA Viral/análise , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
3.
Nature ; 582(7813): 561-565, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32365353

RESUMO

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


Assuntos
Betacoronavirus/genética , Clonagem Molecular/métodos , Infecções por Coronavirus/virologia , Genoma Viral/genética , Genômica/métodos , Pneumonia Viral/virologia , Genética Reversa/métodos , Biologia Sintética/métodos , Animais , COVID-19 , China/epidemiologia , Chlorocebus aethiops , Cromossomos Artificiais de Levedura/metabolismo , Infecções por Coronavirus/epidemiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Humanos , Mutação , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Vírus Sinciciais Respiratórios/genética , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Células Vero , Proteínas Virais/metabolismo , Zika virus/genética
4.
J Virol ; 98(2): e0121623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38236006

RESUMO

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.


Assuntos
Antivirais , Coronavirus Felino , Peritonite Infecciosa Felina , Lactamas , Leucina , Ácidos Sulfônicos , Animais , Gatos , Antivirais/farmacologia , Coronavirus Felino/efeitos dos fármacos , Peritonite Infecciosa Felina/tratamento farmacológico , Lactamas/farmacologia , Leucina/análogos & derivados , RNA , Ácidos Sulfônicos/farmacologia
5.
J Virol ; 97(7): e0196422, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37358450

RESUMO

Porcine epidemic diarrhea virus is a swine pathogen that has been responsible for significant animal and economic losses worldwide in recent years. In this manuscript, we report the generation of a reverse genetics system C(RGS) for the highly virulent US PEDV strain Minnesota (PEDV-MN; GenBank accession number KF468752), which was based on the assembly and cloning of synthetic DNA, using vaccinia virus as a cloning vector. Viral rescue was only possible following the substitution of 2 nucleotides within the 5'UTR and 2 additional nucleotides within the spike gene, based on the sequence of the cell culture-adapted strains. Besides displaying a highly pathogenic phenotype in newborn piglets, in comparison with the parental virus, the rescued recombinant PEDV-MN was used to confirm that the PEDV spike gene has an important role in PEDV virulence and that the impact of an intact PEDV ORF3 on viral pathogenicity is modest. Moreover, a chimeric virus with a TGEV spike gene in the PEDV backbone generated with RGS was able to replicate efficiently in vivo and could be readily transmitted between piglets. Although this chimeric virus did not cause severe disease upon the initial infection of piglets, there was evidence of increasing pathogenicity upon transmission to contact piglets. The RGS described in this study constitutes a powerful tool with which to study PEDV pathogenesis and can be used to generate vaccines against porcine enteric coronaviruses. IMPORTANCE PEDV is a swine pathogen that is responsible for significant animal and economic losses worldwide. Highly pathogenic variants can lead to a mortality rate of up to 100% in newborn piglets. The generation of a reverse genetics system for a highly virulent PEDV strain originating from the United States is an important step in phenotypically characterizing PEDV. The synthetic PEDV mirrored the authentic isolate and displayed a highly pathogenic phenotype in newborn piglets. With this system, it was possible to characterize potential viral virulence factors. Our data revealed that an accessory gene (ORF3) has a limited impact on pathogenicity. However, as it is also now known for many coronaviruses, the PEDV spike gene is one of the main determinants of pathogenicity. Finally, we show that the spike gene of another porcine coronavirus, namely, TGEV, can be accommodated in the PEDV genome background, suggesting that similar viruses can emerge in the field via recombination.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Estados Unidos , Suínos , Virulência/genética , Vírus da Diarreia Epidêmica Suína/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Genética Reversa , Infecções por Coronavirus/prevenção & controle , Nucleotídeos , Diarreia
6.
PLoS Biol ; 19(12): e3001490, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962926

RESUMO

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Assuntos
Autofagia/genética , Sistemas CRISPR-Cas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Antivirais/farmacologia , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral
7.
PLoS Biol ; 19(3): e3001158, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780434

RESUMO

Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Animais , Antivirais/farmacologia , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Interferons/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Especificidade da Espécie , Temperatura , Células Vero , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
8.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152956

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Assuntos
Animais Selvagens , COVID-19 , Animais , Células Epiteliais , Humanos , Sistema Respiratório , SARS-CoV-2
9.
Emerg Infect Dis ; 26(7): 1592-1595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32284092

RESUMO

Infection control instructions call for use of alcohol-based hand rub solutions to inactivate severe acute respiratory syndrome coronavirus 2. We determined the virucidal activity of World Health Organization-recommended hand rub formulations, at full strength and multiple dilutions, and of the active ingredients. All disinfectants demonstrated efficient virus inactivation.


Assuntos
Álcoois/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Desinfetantes/farmacologia , Desinfecção das Mãos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Inativação de Vírus , COVID-19 , Humanos , SARS-CoV-2 , Organização Mundial da Saúde
10.
Artigo em Inglês | MEDLINE | ID: mdl-30181371

RESUMO

The virus family Flaviviridae encompasses several viruses, including (re)emerging viruses which cause widespread morbidity and mortality throughout the world. Members of this virus family are positive-strand RNA viruses and replicate their genome in close association with reorganized intracellular host cell membrane compartments. This evolutionarily conserved strategy facilitates efficient viral genome replication and contributes to evasion from host cell cytosolic defense mechanisms. We have previously described the identification of a small-compound inhibitor, K22, which exerts a potent antiviral activity against a broad range of coronaviruses by targeting membrane-bound viral RNA replication. To analyze the antiviral spectrum of this inhibitor, we assessed the inhibitory potential of K22 against several members of the Flaviviridae family, including the reemerging Zika virus (ZIKV). We show that ZIKV is strongly affected by K22. Time-of-addition experiments revealed that K22 acts during a postentry phase of the ZIKV life cycle, and combination regimens of K22 together with ribavirin (RBV) or interferon alpha (IFN-α) further increased the extent of viral inhibition. Ultrastructural electron microscopy studies revealed severe alterations of ZIKV-induced intracellular replication compartments upon infection of K22-treated cells. Importantly, the antiviral activity of K22 was demonstrated against several other members of the Flaviviridae family. It is tempting to speculate that K22 exerts its broad antiviral activity against several positive-strand RNA viruses via a similar mechanism and thereby represents an attractive candidate for development as a panviral inhibitor.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Infecções por Flaviviridae/tratamento farmacológico , Flaviviridae/efeitos dos fármacos , Aedes , Animais , Linhagem Celular , Membrana Celular/virologia , Chlorocebus aethiops , Infecções por Flaviviridae/virologia , Humanos , Interferon-alfa/farmacologia , RNA Viral/genética , Ribavirina/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos
11.
PLoS Pathog ; 11(5): e1004880, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25946112

RESUMO

Despite large vaccination campaigns, measles virus (MeV) and canine distemper virus (CDV) cause major morbidity and mortality in humans and animals, respectively. The MeV and CDV cell entry system relies on two interacting envelope glycoproteins: the attachment protein (H), consisting of stalk and head domains, co-operates with the fusion protein (F) to mediate membrane fusion. However, how receptor-binding by the H-protein leads to F-triggering is not fully understood. Here, we report that an anti-CDV-H monoclonal antibody (mAb-1347), which targets the linear H-stalk segment 126-133, potently inhibits membrane fusion without interfering with H receptor-binding or F-interaction. Rather, mAb-1347 blocked the F-triggering function of H-proteins regardless of the presence or absence of the head domains. Remarkably, mAb-1347 binding to headless CDV H, as well as standard and engineered bioactive stalk-elongated CDV H-constructs treated with cells expressing the SLAM receptor, was enhanced. Despite proper cell surface expression, fusion promotion by most H-stalk mutants harboring alanine substitutions in the 126-138 "spacer" section was substantially impaired, consistent with deficient receptor-induced mAb-1347 binding enhancement. However, a previously reported F-triggering defective H-I98A variant still exhibited the receptor-induced "head-stalk" rearrangement. Collectively, our data spotlight a distinct mechanism for morbillivirus membrane fusion activation: prior to receptor contact, at least one of the morbillivirus H-head domains interacts with the membrane-distal "spacer" domain in the H-stalk, leaving the F-binding site located further membrane-proximal in the stalk fully accessible. This "head-to-spacer" interaction conformationally stabilizes H in an auto-repressed state, which enables intracellular H-stalk/F engagement while preventing the inherent H-stalk's bioactivity that may prematurely activate F. Receptor-contact disrupts the "head-to-spacer" interaction, which subsequently "unlocks" the stalk, allowing it to rearrange and trigger F. Overall, our study reveals essential mechanistic requirements governing the activation of the morbillivirus membrane fusion cascade and spotlights the H-stalk "spacer" microdomain as a possible drug target for antiviral therapy.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Modelos Moleculares , Morbillivirus/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/química , Antígenos CD/genética , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Chlorocebus aethiops , Vírus da Cinomose Canina/metabolismo , Cães , Células HEK293 , Humanos , Fusão de Membrana/efeitos dos fármacos , Morbillivirus/efeitos dos fármacos , Mutação , Conformação Proteica , Dobramento de Proteína/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica/efeitos dos fármacos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Células Vero , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteínas Virais/genética , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
12.
J Virol ; 89(2): 1445-51, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355896

RESUMO

Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways.


Assuntos
Vírus da Cinomose Canina/fisiologia , Multimerização Proteica , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Análise Mutacional de DNA , Vírus da Cinomose Canina/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas do Envelope Viral/genética
13.
J Virol ; 89(10): 5724-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25787275

RESUMO

UNLABELLED: Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. IMPORTANCE: While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that persistence is based on noncytolytic cell-to-cell spread, which, in the case of CDV, was demonstrated to rely on functional membrane fusion machinery complexes. This inferred a mechanism where nucleocapsids are transmitted through macroscopically invisible microfusion events between infected and target cells. Here, we provide evidence that CDV induces such microfusions in a SLAM- and nectin-4-independent manner, thereby strongly suggesting the existence of a third receptor expressed in glial cells (referred to as GliaR). We propose that GliaR governs intercellular transfer of nucleocapsids and hence contributes to viral persistence in the brain and ensuing demyelinating lesions.


Assuntos
Antígenos CD/metabolismo , Astrócitos/virologia , Moléculas de Adesão Celular/metabolismo , Vírus da Cinomose Canina/fisiologia , Vírus da Cinomose Canina/patogenicidade , Receptores de Superfície Celular/metabolismo , Substituição de Aminoácidos , Animais , Antígenos CD/genética , Encéfalo/metabolismo , Encéfalo/virologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Chlorocebus aethiops , Cinomose/metabolismo , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/genética , Cães , Genes Virais , Interações Hospedeiro-Patógeno , Humanos , Vírus do Sarampo/patogenicidade , Nectinas , Receptores de Superfície Celular/genética , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Panencefalite Esclerosante Subaguda/etiologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Internalização do Vírus
14.
J Virol ; 88(5): 2951-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371057

RESUMO

UNLABELLED: The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE: With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.


Assuntos
Vírus da Cinomose Canina/fisiologia , Fusão de Membrana , Proteínas Virais de Fusão/metabolismo , Substituição de Aminoácidos , Animais , Células CHO , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Fusão Celular , Chlorocebus aethiops , Cricetulus , Cães , Modelos Moleculares , Mutação , Nectinas , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Receptores Virais/metabolismo , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Internalização do Vírus
15.
J Virol ; 88(14): 8057-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807725

RESUMO

The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.


Assuntos
Substituição de Aminoácidos , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/fisiologia , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Mutação de Sentido Incorreto , Ligação Viral , Animais , Animais Selvagens , Antígenos CD/metabolismo , Análise Mutacional de DNA , Cinomose/epidemiologia , Cinomose/virologia , Vírus da Cinomose Canina/isolamento & purificação , Europa (Continente)/epidemiologia , Evolução Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Supressão Genética , Proteínas Virais de Fusão/metabolismo
16.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38470488

RESUMO

Studies on severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) have highlighted the crucial role of host proteases for viral replication and the immune response. The serine proteases furin and TMPRSS2 and lysosomal cysteine proteases facilitate viral entry by limited proteolytic processing of the spike (S) protein. While neutrophils are recruited to the lungs during COVID-19 pneumonia, little is known about the role of the neutrophil serine proteases (NSPs) cathepsin G (CatG), elastase (NE), and proteinase 3 (PR3) on SARS-CoV-2 entry and replication. Furthermore, the current paradigm is that NSPs may contribute to the pathogenesis of severe COVID-19. Here, we show that these proteases cleaved the S protein at multiple sites and abrogated viral entry and replication in vitro. In mouse models, CatG significantly inhibited viral replication in the lung. Importantly, lung inflammation and pathology were increased in mice deficient in NE and/or CatG. These results reveal that NSPs contribute to innate defenses against SARS-CoV-2 infection via proteolytic inactivation of the S protein and that NE and CatG limit lung inflammation in vivo. We conclude that therapeutic interventions aiming to reduce the activity of NSPs may interfere with viral clearance and inflammation in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/metabolismo , Neutrófilos/metabolismo , Glicoproteína da Espícula de Coronavírus , Inflamação , Serina Proteases/metabolismo
17.
Nat Commun ; 14(1): 2124, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059708

RESUMO

The SARS-CoV-2 main protease (3CLpro) is one of the promising therapeutic targets for the treatment of COVID-19. Nirmatrelvir is the first 3CLpro inhibitor authorized for treatment of COVID-19 patients at high risk of hospitalization. We recently reported on the in vitro selection of SARS-CoV-2 3CLpro resistant virus (L50F-E166A-L167F; 3CLprores) that is cross-resistant with nirmatrelvir and other 3CLpro inhibitors. Here, we demonstrate that the 3CLprores virus replicates efficiently in the lungs of intranasally infected female Syrian hamsters and causes lung pathology comparable to that caused by the WT virus. Moreover, hamsters infected with 3CLprores virus transmit the virus efficiently to co-housed non-infected contact hamsters. Importantly, at a dose of 200 mg/kg (BID) of nirmatrelvir, the compound was still able to reduce the lung infectious virus titers of 3CLprores-infected hamsters by 1.4 log10 with a modest improvement in the lung histopathology as compared to the vehicle control. Fortunately, resistance to Nirmatrelvir does not readily develop in clinical setting. Yet, as we demonstrate, in case drug-resistant viruses emerge, they may spread easily which may thus impact therapeutic options. Therefore, the use of 3CLpro inhibitors in combination with other drugs may be considered, especially in immunodeficient patients, to avoid the development of drug-resistant viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Feminino , Mesocricetus , COVID-19/patologia , Pulmão/patologia , Antivirais/farmacologia , Antivirais/uso terapêutico
18.
mBio ; 14(1): e0281522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625640

RESUMO

The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Inibidores Enzimáticos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/genética
19.
Virus Res ; 316: 198796, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568090

RESUMO

To provide insights into the biology of the attenuated canine distemper virus (CDV) Onderstepoort (OP) strain (large plaque forming variant), design next-generation multivalent vaccines, or further investigate its promising potential as an oncolytic vector, we employed contemporary modifications to establish an efficient OP-CDV-based reverse genetics platform. Successful viral rescue was obtained however only upon recovery of a completely conserved charged residue (V13E) residing at the N-terminal region of the large protein (L). Although L-V13 and L-V13E did not display drastic differences in cellular localization and physical interaction with P, efficient polymerase complex (P+ L) activity was recorded only with L-V13E. Interestingly, grafting mNeonGreen to the viral N protein via a P2A ribosomal skipping sequence (OPneon) and its derivative V-protein-knockout variant (OPneon-Vko) exhibited delayed replication kinetics in cultured cells. Collectively, we established an efficient OP-CDV-based reverse genetics system that enables the design of various strategies potentially contributing to veterinary medicine and research.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Linhagem Celular , DNA Complementar , Vírus da Cinomose Canina/genética , Cães , Neônio , Proteínas do Nucleocapsídeo
20.
Sci Rep ; 12(1): 10340, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725865

RESUMO

In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo. In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Camelus , Sistema Respiratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA