Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 89(18): 9967-9975, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28823146

RESUMO

Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 µL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.


Assuntos
Acústica , Separação Celular , Eritrócitos/citologia , Citometria de Fluxo , Células Neoplásicas Circulantes/patologia , Citometria de Fluxo/instrumentação , Fluorescência , Humanos , Lasers , Fenômenos Ópticos , Tamanho da Partícula , Propriedades de Superfície
2.
PLoS Pathog ; 10(6): e1004174, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945495

RESUMO

Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development.


Assuntos
Antibacterianos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Imunidade Inata/efeitos dos fármacos , Quinazolinonas/uso terapêutico , Percepção de Quorum/efeitos dos fármacos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Triazóis/uso terapêutico , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Transformada , Descoberta de Drogas , Genes Reporter/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Pelados , Camundongos Knockout , Conformação Molecular , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/efeitos adversos , Mutação , Fagocitose/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Quinazolinonas/efeitos adversos , Quinazolinonas/química , Quinazolinonas/farmacologia , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/imunologia , Staphylococcus epidermidis/fisiologia , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Triazóis/efeitos adversos , Triazóis/química , Triazóis/farmacologia
3.
Mol Pharmacol ; 84(3): 314-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23788657

RESUMO

The formylpeptide receptor (FPR1) and formylpeptide-like 1 receptor (FPR2) are G protein-coupled receptors that are linked to acute inflammatory responses, malignant glioma stem cell metastasis, and chronic inflammation. Although several N-formyl peptides are known to bind to these receptors, more selective small-molecule, high-affinity ligands are needed for a better understanding of the physiologic roles played by these receptors. High-throughput assays using mixture-based combinatorial libraries represent a unique, highly efficient approach for rapid data acquisition and ligand identification. We report the superiority of this approach in the context of the simultaneous screening of a diverse set of mixture-based small-molecule libraries. We used a single cross-reactive peptide ligand for a duplex flow cytometric screen of FPR1 and FPR2 in color-coded cell lines. Screening 37 different mixture-based combinatorial libraries totaling more than five million small molecules (contained in 5,261 mixture samples) resulted in seven libraries that significantly inhibited activity at the receptors. Using positional scanning deconvolution, selective high-affinity (low nM K(i)) individual compounds were identified from two separate libraries, namely, pyrrolidine bis-diketopiperazine and polyphenyl urea. The most active individual compounds were characterized for their functional activities as agonists or antagonists with the most potent FPR1 agonist and FPR2 antagonist identified to date with an EC50 of 131 nM (4 nM K(i)) and an IC50 of 81 nM (1 nM K(i)), respectively, in intracellular Ca²âº response determinations. Comparative analyses of other previous screening approaches clearly illustrate the efficiency of identifying receptor selective, individual compounds from mixture-based combinatorial libraries.


Assuntos
Receptores de Formil Peptídeo/agonistas , Receptores de Formil Peptídeo/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Aminoácidos/química , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Dicetopiperazinas/síntese química , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos/química , Peptidomiméticos/química , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/farmacologia , Ratos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Estereoisomerismo
4.
Anal Chem ; 85(4): 2208-15, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23331264

RESUMO

This report describes the development of elastomeric capture microparticles (ECµPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry.We have developed simple methods to form ECµPs by cross-linking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECµPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum, or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECµPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECµPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECµPs) and positive contrast particles (cells). Separated ECµPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types.


Assuntos
Citometria de Fluxo/métodos , Microesferas , Polímeros/química , Antígeno Prostático Específico/análise , Animais , Anticorpos Monoclonais/imunologia , Biomarcadores/análise , Biomarcadores/sangue , Dimetilpolisiloxanos/química , Elastômeros , Humanos , Imunoglobulina G/sangue , Camundongos , Técnicas Analíticas Microfluídicas , Polímeros/síntese química , Suínos
5.
Anal Biochem ; 437(1): 77-87, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23470221

RESUMO

ATP binding cassette (ABC) transmembrane efflux pumps such as P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2) play an important role in anticancer drug resistance. A large number of structurally and functionally diverse compounds act as substrates or modulators of these pumps. In vitro assessment of the affinity of drug candidates for multidrug resistance proteins is central to predict in vivo pharmacokinetics and drug-drug interactions. The objective of this study was to identify and characterize new substrates for these transporters. As part of a collaborative project with Life Technologies, 102 fluorescent probes were investigated in a flow cytometric screen of ABC transporters. The primary screen compared substrate efflux activity in parental cell lines with their corresponding highly expressing resistant counterparts. The fluorescent compound library included a range of excitation/emission profiles and required dual laser excitation as well as multiple fluorescence detection channels. A total of 31 substrates with active efflux in one or more pumps and practical fluorescence response ranges were identified and tested for interaction with eight known inhibitors. This screening approach provides an efficient tool for identification and characterization of new fluorescent substrates for ABCB1, ABCC1, and ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Linhagem Celular , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica
6.
J Chem Inf Model ; 53(6): 1475-85, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23705689

RESUMO

We present a general approach to describe the structure-activity relationships (SAR) of combinatorial data sets with activity for two biological endpoints with emphasis on the rapid identification of substitutions that have a large impact on activity and selectivity. The approach uses dual-activity difference (DAD) maps that represent a visual and quantitative analysis of all pairwise comparisons of one, two, or more substitutions around a molecular template. Scanning the SAR of data sets using DAD maps allows the visual and quantitative identification of activity switches defined as specific substitutions that have an opposite effect on the activity of the compounds against two targets. The approach also rapidly identifies single- and double-target R-cliffs, i.e., compounds where a single or double substitution around the central scaffold dramatically modifies the activity for one or two targets, respectively. The approach introduced in this report can be applied to any analogue series with two biological activity endpoints. To illustrate the approach, we discuss the SAR of 106 pyrrolidine bis-diketopiperazines tested against two formylpeptide receptors obtained from positional scanning deconvolution methods of mixture-based libraries.


Assuntos
Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Receptores de Formil Peptídeo/metabolismo , Relação Estrutura-Atividade , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Humanos , Pirrolidinas/química , Pirrolidinas/farmacologia
7.
Molecules ; 18(6): 6408-24, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23722730

RESUMO

In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Modelos Teóricos , Biblioteca de Peptídeos , Receptores de Formil Peptídeo/antagonistas & inibidores , Concentração Inibidora 50 , Ligantes , Peptídeos/química , Peptídeos/farmacologia
8.
Cytometry A ; 81(1): 90-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21954189

RESUMO

The analysis of protein-protein interactions is a key focus of proteomics efforts. The yeast two-hybrid system (Y2H) has been the most commonly used method in genome-wide searches for protein interaction partners. However, the throughput of the current yeast two-hybrid array approach is hampered by the involvement of the time-consuming LacZ assay and/or the incompatibility of liquid handling automation due to the requirement for selection of colonies/diploids on agar plates. To facilitate large-scale Y2H assays, we report a novel array approach by coupling a GFP reporter based Y2H system with high throughput flow cytometry that enables the processing of a 96-well plate in as little as 3 min. In this approach, the yEGFP reporter has been established in both AH109 (MATa) and Y187 (MATα) reporter cells. It not only allows the generation of two copies of GFP reporter genes in diploid cells, but also allows the convenient determination of self-activators generated from both bait and prey constructs by flow cytometry. We demonstrate a Y2H array assay procedure that is carried out completely in liquid media in 96-well plates by mating bait and prey cells in liquid YPD media, selecting the diploids containing positive interaction pairs in selective media and analyzing the GFP reporter directly by flow cytometry. We have evaluated this flow cytometry based array procedure by showing that the interaction of the positive control pair P53/T is able to be reproducibly detected at 72 hr postmating compared with the negative control pairs. We conclude that our flow cytometry based yeast two-hybrid approach is robust, convenient, quantitative, and is amenable to large-scale analysis using liquid-handling automation.


Assuntos
Citometria de Fluxo/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Sítios de Ligação
9.
Cytometry A ; 81(5): 419-29, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438314

RESUMO

Flow cytometry specializes in high-content measurements of cells and particles in suspension. Having long excelled in analytical throughput of single cells and particles, only recently with the advent of HyperCyt sampling technology, flow cytometry's multiexperiment throughput has begun to approach the point of practicality for efficiently analyzing hundreds-of-thousands of samples, the realm of high-throughput screening (HTS). To extend performance and automation compatibility, we built a HyperCyt-linked Cluster Cytometer platform, a network of flow cytometers for analyzing samples displayed in high-density, 1,536-well plate format. To assess the performance, we used cell- and microsphere-based HTS assays that had been well characterized in the previous studies. Experiments addressed important technical issues: challenges of small wells (assay volumes 10 µL or less, reagent mixing, cell and particle suspension), detecting and correcting for differences in performance of individual flow cytometers, and the ability to reanalyze a plate in the event of problems encountered during the primary analysis. Boosting sample throughput an additional fourfold, this platform is uniquely positioned to synergize with expanding suspension array and cell barcoding technologies in which as many as 100 experiments are performed in a single well or sample. As high-performance flow cytometers shrink in cost and size, cluster cytometry promises to become a practical, productive approach for HTS, and other large-scale investigations of biological complexity.


Assuntos
Citometria de Fluxo/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Desenho de Equipamento , Citometria de Fluxo/métodos , Software
10.
SLAS Discov ; 27(5): 314-322, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35385793

RESUMO

The solid tumor microenvironment (TME) suppresses immune responses. Three alterations in the TME converge on a pathway triggered by elevated cyclic AMP (cAMP) that suppresses T cell receptor (TCR) signaling. We developed a phenotypic assay to screen for small molecules that interfere with this pathway using TALL-104 human leukemic cytotoxic T lymphocytes pretreated with prostaglandin E2 to elevate cAMP. Beads coated with anti-CD3 antibodies stimulate lytic granule exocytosis, which is detected via binding of an antibody against lysosome associated membrane protein 1 (LAMP-1) measured with flow cytometry. Confirming that the assay can find compounds with desired activity, treating cells with a phorbol ester restores exocytosis. The assay behaves well in 96-well format and we screened a collection of compounds expected to have effects on epigenetic regulatory proteins. Compounds in this collection affected lytic granule exocytosis after 24-hour treatment, but none prevented cAMP from suppressing lytic granule exocytosis. We used a fully automated 384-well version of the assay to screen the Prestwick Compound Library but obtained no confirmed hits. Analyzing this assay's performance reveals two points of interest. First, cytometry offers multiple ways to quantify signals. Z' was higher using percent positive cells than mean fluorescence because the relationship between the two measures saturates, but using percent positive could make it harder to find hits in some assays. Second, variance was higher in positive controls than in negative controls in this assay, which degrades assay performance less than if variance was higher in negative controls.


Assuntos
AMP Cíclico , Linfócitos T Citotóxicos , AMP Cíclico/metabolismo , Exocitose , Citometria de Fluxo , Humanos , Transdução de Sinais
11.
Drug Discov Today Ther Strateg ; 8(3-4): 61-69, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22368688

RESUMO

Academia and small business research units are poised to play an increasing role in drug discovery, with drug repurposing as one of the major areas of activity. Here we summarize project status for a number of drugs or classes of drugs: raltegravir, cyclobenzaprine, benzbromarone, mometasone furoate, astemizole, R-naproxen, ketorolac, tolfenamic acid, phenothiazines, methylergonovine maleate and beta-adrenergic receptor drugs, respectively. Based on this multi-year, multi-project experience we discuss strengths and weaknesses of academic-based drug repurposing research. Translational, target and disease foci are strategic advantages fostered by close proximity and frequent interactions between basic and clinical scientists, which often result in discovering new modes of action for approved drugs. On the other hand, lack of integration with pharmaceutical sciences and toxicology, lack of appropriate intellectual coverage and issues related to dosing and safety may lead to significant drawbacks. The development of a more streamlined regulatory process world-wide, and the development of pre-competitive knowledge transfer systems such as a global healthcare database focused on regulatory and scientific information for drugs world-wide, are among the ideas proposed to improve the process of academic drug discovery and repurposing, and to overcome the "valley of death" by bridging basic to clinical sciences.

12.
J Biomol Screen ; 14(6): 596-609, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19470718

RESUMO

Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. Discovery of effective chemotherapeutics involves the identification of agents that inhibit cancer cell growth. Increases in intracellular granularity have been observed during physiological processes that include senescence, apoptosis, and autophagy, making this phenotypic change a useful marker for identifying small molecules that induce cellular growth arrest or death. In this regard, epithelial-derived cancer cell lines appear uniquely susceptible to increased intracellular granularity following exposure to chemotherapeutics. We have established a novel flow cytometry approach that detects increases in side light scatter in response to morphological changes associated with intracellular granularity in the androgen-sensitive LNCaP and androgen-independent PC3 human prostate cancer cell lines. A cell-based assay was developed to screen for small molecule inducers of intracellular granularity using the HyperCyt high-throughput flow cytometry platform. Validation was performed using the Prestwick Chemical Library, where known modulators of LNCaP intracellular granularity, such as testosterone, were identified. Nonandrogenic inducers of granularity were also detected. A further screen of approximately 25,000 small molecules led to the identification of a class of aryl-oxazoles that increased intracellular granularity in both cell lines, often leading to cell death. The most potent agents exhibited submicromolar efficacy in LNCaP and PC3 cells.


Assuntos
Antineoplásicos/farmacologia , Citometria de Fluxo/métodos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/patologia , Neoplasias da Próstata/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Androgênios/análise , Androgênios/farmacologia , Antineoplásicos/análise , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Metribolona/farmacologia , National Institutes of Health (U.S.) , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química , Estados Unidos
13.
Cytometry A ; 75(3): 264-70, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19006074

RESUMO

Formylpeptide receptors (FPRs) are implicated in a variety of immunological and inflammatory response cascades. Further understanding of FPR-family ligand interactions could play an integral role in biological and therapeutic discovery. Fluorescent reporter ligands for the family are desirable experimental tools for increased understanding of ligand/receptor interactions. The ligand binding affinity and fluorescent reporting activity of the peptide WK(FL)YMVm was explored though use of the high throughput HyperCyt flow cytometric platform. Relative binding affinities of several known FPR and FPRL1 peptide ligands were compared in a duplex assay format. The fluorescent W-peptide ligand, WK(FL)YMVm, proved to be a high-affinity, cross-reactive reporter ligand for the FPR/FPRL1 duplex assay. Ligand specificity was demonstrated for each receptor, with known, selective peptide ligands. The binding site specificity of the reporter ligand was further verified by a fluorescent confocal microscopy internalization experiment. The fluorescent peptide ligand WK(FL)YMVm binds with high affinity to both FPR and FPRL1. The differential affinities of known peptide ligands were observed with the use of this fluorescent probe in high throughput screening flow cytometry.


Assuntos
Fatores Quimiotáticos/metabolismo , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Oligopeptídeos/metabolismo , Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Animais , Células Cultivadas , Citometria de Fluxo , Fluoresceínas/química , Corantes Fluorescentes/química , Humanos , Ligantes , Oligopeptídeos/química , Peptídeos/química , Ratos , Transfecção , Células U937
14.
Cytometry A ; 75(3): 253-63, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18785269

RESUMO

Of recent, clinical interest have been two related human G-protein coupled receptors: formylpeptide receptor (FPR), linked to antibacterial inflammation and malignant glioma cell metastasis; and FPR like-1 (FPRL1), linked to chronic inflammation in systemic amyloidosis, Alzheimer's disease, and prion diseases. In association with the National Institutes of Health (NIH) Molecular Library Screening Network, we implemented a flow-cytometry-based high-throughput screening (HTS) approach for identifying selective small molecule FPR and FPRL1 ligands. The screening assay measured the ability of test compounds to competitively displace a high-affinity, fluorescein- labeled peptide ligand from FPR, FPRL1, or both. U937 cells expressing FPR and rat basophil leukemia (RBL) cells expressing FPRL1 were tested together in a "duplex" format. The U937 cells were color coded with red-fluorescent dye allowing their distinction during analysis. Compounds, cells, and fluorescent ligand were sequentially combined (no wash) in 15 microl assay volumes in 384-well plates. Throughput averaged approximately 11 min per plate to analyze approximately 4,000 cells ( approximately 2,000/receptor) in a 2 microl aspirate from each well. In primary single concentration HTS of 24,304 NIH Small Molecule Repository compounds, 253 resulted in inhibition >30% (181 for FPR, 72 for FPRL1) of which 40 had selective binding inhibition constants (K(i)) < or = 4 microM (34 for FPR and 6 for FPRL1). An additional 1,446 candidate compounds were selected by structure-activity-relationship analysis of the hits and screened to identify novel ligands for FPR (3570-0208, K(i) = 95 +/- 10 nM) and FPRL1 (BB-V-115, K(i) = 270 +/- 51 nM). Each was a selective antagonist in calcium response assays and the most potent small molecule antagonist reported for its respective receptor to date. The duplex assay format reduced assay time, minimized reagent requirements, and provided selectivity information at every screening stage, thus proving to be an efficient means to screen for selective receptor ligand probes.


Assuntos
Citometria de Fluxo/métodos , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Lipoxinas/antagonistas & inibidores , Animais , Células Cultivadas , Fatores Quimiotáticos/metabolismo , Corantes Fluorescentes , Humanos , Ligantes , Sondas Moleculares/análise , Ratos , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Sensibilidade e Especificidade , Células U937
15.
Methods Mol Biol ; 486: 151-65, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19347622

RESUMO

The HyperCyt high-throughput (HT) flow cytometry sampling platform uses a peristaltic pump, in combination with an autosampler, and a novel approach to data collection, to circumvent time-delay bottlenecks of conventional flow cytometry. This approach also dramatically reduces the amount of sample aspirated for each analysis, typically requiring ~2 microL per sample while making quantitative fluorescence measurements of 40 or more samples per minute with thousands to tens of thousands of cells in each sample. Here, we describe a simple robust screening assay that exploits the high-content measurement capabilities of the flow cytometer to simicroltaneously probe the binding of test compounds to two different receptors in a common assay volume, a duplex assay format. The ability of the flow cytometer to distinguish cell-bound from free fluorophore is also exploited to eliminate wash steps during assay setup. HT flow cytometry with this assay has allowed efficient screening of tens of thousands of small molecules from the NIH Small-Molecule Repository to identify selective ligands for two related G-protein-coupled receptors, the formylpeptide receptor and formylpeptide receptor-like 1.


Assuntos
Citometria de Fluxo/métodos , Leucemia Basofílica Aguda/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Animais , Ligação Competitiva , Humanos , Ligantes , Ratos , Receptores de Formil Peptídeo/genética , Receptores de Lipoxinas/genética , Células Tumorais Cultivadas
16.
J Biomol Screen ; 13(3): 185-93, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310528

RESUMO

The overexpression of P-glycoprotein, encoded by the ATP Binding Cassette B1 (ABCB1) gene, contributes to multidrug resistance (MDR) and is considered one of the major obstacles to successful cancer chemotherapy. The authors previously developed a T-lineage acute lymphoblastic leukemia (T-ALL) cell line that overexpresses ABCB1 and exhibits MDR to daunorubicin (DNR), prednisolone, and vincristine. Using this cell line and the fluorescent probe JC-1, they developed a flow cytometry-based, high-throughput screening (HTS) assay that quantifies ABCB1 efflux. They screened a library of 880 off-patent drugs for their ability to inhibit ABCB1 efflux and then measured the ability of 11 lead compounds to reverse in vitro DNR-mediated drug resistance and the toxic doses for each agent. Seven of the 11 drugs were able to reverse drug resistance at a concentration significantly below its toxic dose. Of the remaining 7, only 1 compound, mometasone furoate, has not been previously described as an ABCB1 antagonist to DNR-mediated drug resistance. On the basis of its high ABC modulator activity and relatively large in vitro therapeutic window, this drug warrants further investigation. In addition, the approach used in this study is useful for identifying off-patent drugs that may be repurposed for novel clinical indications.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Pregnadienodiois/análise , Pregnadienodiois/farmacologia , Bioensaio , Carbocianinas/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células Jurkat , Furoato de Mometasona , Pregnadienodiois/química , Regulação para Cima/efeitos dos fármacos
17.
Cytometry A ; 73(5): 390-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18340645

RESUMO

The androgen receptor (AR) is a steroid hormone receptor which regulates transcription of androgen-sensitive genes and is responsible for the development and maintenance of male secondary sexual characteristics. Chemicals that interfere with AR activity may lead to pathological conditions in androgen-sensitive tissues. A variety of reporter systems have been developed, driven by androgen-sensitive promoters, which screen for chemicals that modulate androgenic activity. We have developed a flexible, high-throughput AR transcriptional activation assay, designated the Multifunctional Androgen Receptor Screening (MARS) assay, to facilitate the identification of novel modulators of AR transcriptional activity using flow cytometry. Androgen-independent human prostate cancer-derived PC3 cells were transiently cotransfected with an expression vector for the wild-type human AR and an androgen-sensitive promoter regulating the expression of destabilized enhanced GFP (dsEGFP). The transfected cells were stimulated with established androgenic and antiandrogenic compounds and assessed for increased or decreased dsEGFP expression. To screen for antagonists of AR transcription, the AR agonist R1881 was coadministered at submaximal concentrations with potential AR antagonists. The assay was formatted for high-throughput screening using the HyperCyt flow cytometry system. Agents with established androgenic and antiandrogenic activity were used for validation of the MARS assay. AR agonists were found to potently induce dsEGFP. Furthermore, AR agonists induced dsEGFP expression in a dose-dependent manner. Alternatively, AR antagonists blocked dsEGFP expression when coadministered with low-dose R1881, which also occurred in a dose-dependent manner. Modulators of AR transcriptional activity can be successfully identified by the MARS assay, utilizing a rapid, flexible, sensitive, and high-throughput format. Dose-response curves can be successfully generated for these compounds, allowing for an assessment of potency. Because of its simplicity and high-throughput compatibility, the MARS assay and HyperCyt system combined with flow cytometric analysis represents a valuable and novel addition to the current repertoire of AR transcriptional activation screening assays.


Assuntos
Citometria de Fluxo/métodos , Receptores Androgênicos/genética , Antagonistas de Receptores de Andrógenos , Androgênios , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Flutamida/farmacologia , Humanos , Masculino , Metribolona/farmacologia , Ativação Transcricional/efeitos dos fármacos , Transfecção
18.
Assay Drug Dev Technol ; 6(2): 263-76, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18205550

RESUMO

Up-regulation of pump (transporter) expression and selection of resistant cancer cells result in cancer multidrug resistance to diverse substrates of these transporters. While more than 48 members of the ATP binding cassette (ABC) transporter superfamily have been identified, up to now only three human ABC transporters-ABCB1, ABCC1, and ABCG2-have unambiguously been shown to contribute to cancer multidrug resistance. The use of low-toxicity and high-specificity agents as a targeted transporter inhibition strategy is necessary to effectively overcome multiple drug resistance. An objective of the present studies was to develop and validate HyperCyt (IntelliCyt, Albuquerque, NM) flow cytometry high-throughput screeening assays to assess the specificity of test compounds that inhibited transporters as an integral part of the screen. Two separate duplex assays were constructed: one in which ABCB1 and ABCG2 transporters were evaluated in parallel using fluorescent J-aggregate-forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide as substrate, and the other in which ABCB1 and ABCC1 transporters were evaluated in parallel using fluorescent calcein acetoxymethyl ester as substrate. ABCB1-expressing cells were color-coded to allow their distinction from cells expressing the alternate transporter. The assays were validated in a screen of the Prestwick Chemical Library (Illkirch, France). Three novel selective inhibitors of the ABCC1 transporter were identified in the screen, and the activity of each was confirmed in follow-up chemosensitivity shift and reversal studies. This high-throughput screening assay provides an efficient approach for identifying selective inhibitors of individual ABC transporters, promising as probes of transporter function and therapeutic tools for treating chemotherapy-resistant cancers.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Benzimidazóis , Carbocianinas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Eletrofisiologia , Corantes Fluorescentes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
19.
Curr Opin Pharmacol ; 7(5): 527-34, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17652026

RESUMO

Although flow cytometry is viewed as a mature technology, there have been dramatic advances in analysis capabilities, sorting, sample handling and sensitivity in the past decade. These advances contribute to its application in biological and chemical diversity, sample throughput, high content, and complex systems biology. This article will evaluate the new opportunities for flow cytometry relating to receptor assembly and pharmacology, as well as a range of screening applications.


Assuntos
Desenho de Fármacos , Citometria de Fluxo , Animais , Humanos , Processamento de Imagem Assistida por Computador , National Institutes of Health (U.S.) , Tamanho da Partícula , Fosfoproteínas/metabolismo , Estados Unidos
20.
SLAS Discov ; 23(7): 751-760, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29842834

RESUMO

Classical therapeutic regimens are subject to toxicity, low efficacy, and/or the development of drug resistance. Thus, the discovery of synergistic drug combinations would permit treatment with lower, tolerable dosages of each agent and restored sensitivity. We describe the development and use of the SynScreen software application, which allows for visual and mathematical determinations of compound concentrations that produce super-additive effects. This software uses nonlinear regression fits of dose responses to determine synergism by the Bliss independence and Loewe additivity analysis models. We demonstrate the utility of SynScreen with data analysis from in vitro high-throughput flow cytometry (HTFC) combination screens with repurposed drugs and multiplexed synergy analysis of multiple biologic parameters in parallel. The applicability of SynScreen was confirmed by testing open-source data sets used in published drug combination literature. A key benefit of SynScreen for high-throughput drug combination screening is that observed measurements are graphically depicted in comparison with a three-dimensional surface that represents the theoretical responses at which Bliss additivity would occur. These images and summary tables for the calculated drug interactions are automatically exported. This allows for substantial data sets to be visually assessed, expediting the quick identification of efficacious drug combinations and thereby facilitating the design of confirmatory studies and clinical trials.


Assuntos
Descoberta de Drogas/métodos , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Software , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA