Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373555

RESUMO

Myocardial remodeling is an inevitable risk factor for cardiac arrhythmias and can potentially be corrected with cell therapy. Although the generation of cardiac cells ex vivo is possible, specific approaches to cell replacement therapy remain unclear. On the one hand, adhesive myocyte cells must be viable and conjugated with the electromechanical syncytium of the recipient tissue, which is unattainable without an external scaffold substrate. On the other hand, the outer scaffold may hinder cell delivery, for example, making intramyocardial injection difficult. To resolve this contradiction, we developed molecular vehicles that combine a wrapped (rather than outer) polymer scaffold that is enveloped by the cell and provides excitability restoration (lost when cells were harvested) before engraftment. It also provides a coating with human fibronectin, which initiates the process of graft adhesion into the recipient tissue and can carry fluorescent markers for the external control of the non-invasive cell position. In this work, we used a type of scaffold that allowed us to use the advantages of a scaffold-free cell suspension for cell delivery. Fragmented nanofibers (0.85 µm ± 0.18 µm in diameter) with fluorescent labels were used, with solitary cells seeded on them. Cell implantation experiments were performed in vivo. The proposed molecular vehicles made it possible to establish rapid (30 min) electromechanical contact between excitable grafts and the recipient heart. Excitable grafts were visualized with optical mapping on a rat heart with Langendorff perfusion at a 0.72 ± 0.32 Hz heart rate. Thus, the pre-restored grafts' excitability (with the help of a wrapped polymer scaffold) allowed rapid electromechanical coupling with the recipient tissue. This information could provide a basis for the reduction of engraftment arrhythmias in the first days after cell therapy.


Assuntos
Transplante de Coração , Engenharia Tecidual , Ratos , Animais , Humanos , Miocárdio/metabolismo , Arritmias Cardíacas/terapia , Arritmias Cardíacas/metabolismo , Polímeros/metabolismo , Transplante de Células , Alicerces Teciduais/química
2.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216249

RESUMO

Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton's Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon-gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4-9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Secretoma/efeitos dos fármacos , Silício/farmacologia , Geleia de Wharton/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Antígenos CD13/metabolismo , Condrogênese/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Secretoma/metabolismo , Antígenos Thy-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Geleia de Wharton/metabolismo
3.
Chemphyschem ; 18(8): 970-979, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28194871

RESUMO

Quantum dot (QD) encoded microbeads are emerging for multiplexed analysis of biological markers. The quantitative encoding of microbeads prepared with different concentrations of QDs of different colors suffers from resonance energy transfer from the QDs fluorescing at shorter wavelengths to the QDs fluorescing at longer wavelengths. Here, we used the layer-by-layer deposition technique to spatially separate QDs of different colors with several polymer layers so that the distance between them would be larger than the Förster energy transfer radius. We performed fluorescence lifetime measurements to investigate and determine the conditions excluding significant resonance energy transfer between QDs within QD-encoded microbeads. Additionally, the number of QDs adsorbed onto microbeads was systematically established and multilayer structures of the QD-encoded microbead shells were characterized by scanning probe nanotomography. Finally, we prepared eight populations of FRET-free microbeads encoded with QDs of three colors at two intensity levels and demonstrated that all the optical codes are excitable at a single wavelength and may be clearly identified in three channels of a flow cytometer. The developed approach for engineering QD-encoded microbeads that are free from optical artefacts related to inter-QD resonance energy transfer paves the way to quantitative QD-based multiplexed assays.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , Fluorescência , Fenômenos Ópticos
4.
Biomimetics (Basel) ; 8(6)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887618

RESUMO

Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the heart. Optical mapping techniques have revealed the role of reentry in arrhythmia initiation and fibrillation transition, but the underlying biophysical mechanisms are still difficult to investigate in intact hearts. Tissue engineering models of cardiac tissue can mimic the structure and function of native cardiac tissue and enable interactive observation of reentry formation and wave propagation. This review will present various approaches to constructing cardiac tissue models for reentry studies, using the authors' work as examples. The review will highlight the evolution of tissue engineering designs based on different substrates, cell types, and structural parameters. A new approach using polymer materials and cellular reprogramming to create biomimetic cardiac tissues will be introduced. The review will also show how computational modeling of cardiac tissue can complement experimental data and how such models can be applied in the biomimetics of cardiac tissue.

5.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36677111

RESUMO

Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells. In this article, we documented the possibility of influencing these processes using polymer kernels: biocompatible fiber fragments of subcellular size that can be adsorbed to a cell, thereby creating the minimum necessary adhesion foci to shape the cell and provide support for the organization of the cytoskeleton and the contractile apparatus prior to adhesion to the recipient tissue. Using optical excitation markers, the restoration of the excitability of cardiomyocytes in suspension upon adsorption of polymer kernels was shown. It increased the likelihood of the formation of a stable electrophysiological coupling in vitro. The obtained results may be considered as a proof of concept that the stochastic engraftment process of injected suspension cells can be controlled by smart biomaterials.

6.
Biomed Mater ; 16(4)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34100773

RESUMO

Organ decellularization is one of the promising technologies of regenerative medicine, which allows obtaining cell-free extracellular matrix (ECM), which provide preservation of the composition, architecture, vascular network and biological activity of the ECM. The method of decellularization opens up wide prospects for its practical application not only in the field of creating full-scale bioengineered structures, but also in the manufacture of vessels, microcarriers, hydrogels, and coatings. The main goal of our work was the investigation of structure and biological properties of lyophilized decellularized Wistar rat liver fragments (LDLFs), as well as we assessed the regenerative potential of the obtained ECM. We obtained decellularized liver of a Wistar rat, the vascular network and the main components of the ECM of tissue were preserved. H&E staining of histological sections confirmed the removal of cells. DNA content of ECM is equal to 0.7% of native tissue DNA content. Utilizing scanning probe nanotomogrphy method, we showed sinuous, rough topography and highly nanoporous structure of ECM, which provide high level of mouse 3T3 fibroblast and Hep-G2cells biocompatibility. Obtained LDLF had a high regenerative potential, which we studied in an experimental model of a full-thickness rat skin wound healing: we observed the acceleration of wound healing by 2.2 times in comparison with the control.


Assuntos
Matriz Extracelular Descelularizada/química , Fígado , Nanoestruturas , Animais , Fígado/química , Fígado/citologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ratos , Ratos Wistar , Engenharia Tecidual
7.
ACS Appl Mater Interfaces ; 12(32): 35882-35894, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32663390

RESUMO

The layer-by-layer (LbL) deposition approach allows combined incorporation of fluorescent, magnetic, and plasmonic nanoparticles into the shell of polyelectrolyte microcapsules to obtain stimulus-responsive systems whose imaging and drug release functions can be triggered by external stimuli. The combined use of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) yields magnetic-field-driven imaging tools that can be tracked and imaged even deep in tissue when the appropriate type of QDs and wavelength of their excitation are used. QDs are excellent photonic labels for microcapsule encoding due to their close-to-unity photoluminescence (PL) quantum yields, narrow PL emission bands, and tremendous one- and two-photon extinction coefficients. However, the presence of MNPs and electrically charged polyelectrolyte molecules used for the LbL fabrication of magneto-optical microcapsules provokes alterations of the QD optical properties because of the photoinduced charge and energy transfer resulting in QD photodarkening or photobrightening. These lead to variation of the microcapsule PL signal under illumination, which hampers their tracking and quantitative analysis in cells and tissues. Here, we have studied the effects of the structure and spatial arrangement of the nanoparticles within the microcapsule polyelectrolyte shell, the total shell thickness, and the shell surface charge on their PL properties under continuous illumination. The roles of the charge transfer and its main driving forces in the stability of the microcapsules PL signal have been established, and the design of the microcapsules dually encoded with QDs and MNPs providing the strongest and most stable PL has been determined. Controlling the energy transfer from the QDs and MNPs and the charge transfer from QDs to polyelectrolyte layers in the engineering of magneto-optical microcapsules with a bright and stable PL signal extends their applications to long-lasting quantitative fluorescence imaging.

8.
Rev Sci Instrum ; 88(2): 023701, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249537

RESUMO

We present a new concept of a combined scanning probe microscope (SPM)/ultramicrotome apparatus. It enables "slice-and-view" scanning probe nanotomography measurements and 3D reconstruction of the bulk sample nanostructure from series of SPM images after consecutive ultrathin sections. The sample is fixed on a flat XYZ scanning piezostage mounted on the ultramicrotome arm. The SPM measuring head with a cantilever tip and a laser-photodiode tip detection system approaches the sample for SPM measurements of the block-face surface immediately after the ultramicrotome sectioning is performed. The SPM head is moved along guides that are also fixed on the ultramicrotome arm. Thereby, relative dysfunctional displacements of the tip, the sample, and the ultramicrotome knife are minimized. The design of the SPM head enables open frontal optical access to the sample block-face adapted for high-resolution optical lenses for correlative SPM/optical microscopy applications. The new system can be used in a wide range of applications for the study of 3D nanostructures of biological objects, biomaterials, polymer nanocomposites, and nanohybrid materials in various SPM and optical microscopy measuring modes.

9.
Ultramicroscopy ; 182: 118-123, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28672183

RESUMO

In the past decade correlative microscopy, which combines the potentials of different types of high-resolution microscopies with a variety of optical microspectroscopy techniques, has been attracting increasing attention in material science and biological research. One of outstanding solutions in this area is the combination of scanning probe microscopy (SPM), which provides data on not only the topography, but also the spatial distribution of a wide range of physical properties (elasticity, conductivity, etc.), with ultramicrotomy, allowing 3D multiparametric examination of materials. The combination of SPM and ultramicrotomy (scanning probe nanotomography) is very appropriate for characterization of soft multicompound nanostructurized materials, such as polymer matrices and microstructures doped with different types of nanoparticles (magnetic nanoparticles, quantum dots, nanotubes, etc.), and biological materials. A serious problem of this technique is a lack of chemical and optical characterization tools, which may be solved by using optical microspectroscopy. Here, we report the development of an instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography in a single apparatus. This approach retains all the advantages of SPM and upright optical microspectroscopy and allows 3D multiparametric characterization using both techniques. As the first test of the system developed, we have performed correlative characterization of the morphology and the magnetic and fluorescent properties of fluorescent magnetic microspheres doped with a fluorescent dye and magnetic nanoparticles. The results of this study can be used to obtain 3D volume images of a specimen for most high-resolution near-field scanning probe microscopies: SNOM, TERS, AFM-IR, etc. This approach will result in development of unique techniques combining the advantages of SPM (nanoscale morphology and a wide range of physical parameters) and high-resolution optical microspectroscopy (nanoscale chemical mapping and optical properties) and allowing simultaneous 3D measurements.

10.
Nanoscale ; 5(19): 8781-98, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23934544

RESUMO

Fabrication of modern nanomaterials and nanostructures with specific functional properties is both scientifically promising and commercially profitable. The preparation and use of nanomaterials require adequate methods for the control and characterization of their size, shape, chemical composition, crystalline structure, energy levels, pathways and dynamics of physical and chemical processes during their fabrication and further use. In this review, we discuss different instrumental methods for the analysis and metrology of materials and evaluate their advantages and limitations at the nanolevel.

11.
ACS Nano ; 7(10): 8953-62, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23991901

RESUMO

Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a "slice-and-view" combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy-nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products.


Assuntos
Nanoestruturas , Análise Espectral/métodos , Tomografia/métodos
12.
J Microsc ; 226(Pt 3): 207-17, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17535260

RESUMO

A new device (NTEGRA Tomo) that is based on the integration of the scanning probe microscope (SPM) (NT-MDT NTEGRA SPM) and the Ultramicrotome (Leica UC6NT) is presented. This integration enables the direct monitoring of a block face surface immediately following each sectioning cycle of ultramicrotome sectioning procedure. Consequently, this device can be applied for a serial section tomography of the wide range of biological and polymer materials. The automation of the sectioning/scanning cycle allows one to acquire up to 10 consecutive sectioned layer images per hour. It also permits to build a 3-D nanotomography image reconstructed from several tens of layer images within one measurement session. The thickness of the layers can be varied from 20 to 2000 nm, and can be controlled directly by its interference colour in water. Additionally, the NTEGRA Tomo with its nanometer resolution is a valid instrument narrowing and highlighting an area of special interest within volume of the sample. For embedded biological objects the ultimate resolution of SPM mostly depends on the quality of macromolecular preservation of the biomaterial during sample preparation procedure. For most polymer materials it is comparable to transmission electron microscopy (TEM). The NTEGRA Tomo can routinely collect complementary AFM and TEM images. The block face of biological or polymer sample is investigated by AFM, whereas the last ultrathin section is analyzed with TEM after a staining procedure. Using the combination of both of these ultrastructural methods for the analysis of the same particular organelle or polymer constituent leads to a breakthrough in AFM/TEM image interpretation. Finally, new complementary aspects of the object's ultrastructure can be revealed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA