Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2305030121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517975

RESUMO

During wildfires and fossil fuel combustion, biomass is converted to black carbon (BC) via incomplete combustion. BC enters the ocean by rivers and atmospheric deposition contributing to the marine dissolved organic carbon (DOC) pool. The fate of BC is considered to reside in the marine DOC pool, where the oldest BC 14C ages have been measured (>20,000 14C y), implying long-term storage. DOC is the largest exchangeable pool of organic carbon in the oceans, yet most DOC (>80%) remains molecularly uncharacterized. Here, we report 14C measurements on size-fractionated dissolved BC (DBC) obtained using benzene polycarboxylic acids as molecular tracers to constrain the sources and cycling of DBC and its contributions to refractory DOC (RDOC) in a site in the North Pacific Ocean. Our results reveal that the cycling of DBC is more dynamic and heterogeneous than previously believed though it does not comprise a single, uniformly "old" 14C age. Instead, both semilabile and refractory DBC components are distributed among size fractions of DOC. We report that DBC cycles within DOC as a component of RDOC, exhibiting turnover in the ocean on millennia timescales. DBC within the low-molecular-weight DOC pool is large, environmentally persistent and constitutes the size fraction that is responsible for long-term DBC storage. We speculate that sea surface processes, including bacterial remineralization (via the coupling of photooxidation of surface DBC and bacterial co-metabolism), sorption onto sinking particles and surface photochemical oxidation, modify DBC composition and turnover, ultimately controlling the fate of DBC and RDOC in the ocean.

2.
Nature ; 581(7806): 63-66, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376961

RESUMO

The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate1, potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes2,3, hydroclimate may be the dominant driver of soil carbon persistence in the tropics4,5; however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records6 reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


Assuntos
Dióxido de Carbono/análise , Dióxido de Carbono/história , Sequestro de Carbono , Solo/química , Clima Tropical , Atmosfera/química , Ciclo do Carbono , Planeta Terra , História Antiga , Chuva , Estações do Ano , Temperatura , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 120(12): e2209883120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913572

RESUMO

Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ13C, and Δ14C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ14C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: -228 ± 211 vs. -492 ± 173‰) rather than traditional active layer and permafrost pools (-300 ± 236 vs. -441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.


Assuntos
Material Particulado , Rios , Regiões Árticas , Biomassa , Carbono , Solo
4.
Nature ; 570(7760): 228-231, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31190013

RESUMO

The balance between photosynthetic organic carbon production and respiration controls atmospheric composition and climate1,2. The majority of organic carbon is respired back to carbon dioxide in the biosphere, but a small fraction escapes remineralization and is preserved over geological timescales3. By removing reduced carbon from Earth's surface, this sequestration process promotes atmospheric oxygen accumulation2 and carbon dioxide removal1. Two major mechanisms have been proposed to explain organic carbon preservation: selective preservation of biochemically unreactive compounds4,5 and protection resulting from interactions with a mineral matrix6,7. Although both mechanisms can operate across a range of environments and timescales, their global relative importance on 1,000-year to 100,000-year timescales remains uncertain4. Here we present a global dataset of the distributions of organic carbon activation energy and corresponding radiocarbon ages in soils, sediments and dissolved organic carbon. We find that activation energy distributions broaden over time in all mineral-containing samples. This result requires increasing bond-strength diversity, consistent with the formation of organo-mineral bonds8 but inconsistent with selective preservation. Radiocarbon ages further reveal that high-energy, mineral-bound organic carbon persists for millennia relative to low-energy, unbound organic carbon. Our results provide globally coherent evidence for the proposed7 importance of mineral protection in promoting organic carbon preservation. We suggest that similar studies of bond-strength diversity in ancient sediments may reveal how and why organic carbon preservation-and thus atmospheric composition and climate-has varied over geological time.


Assuntos
Sequestro de Carbono , Carbono/análise , Carbono/química , Sedimentos Geológicos/química , Solo/química , Atmosfera/química , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Respiração Celular , Conjuntos de Dados como Assunto , República Democrática do Congo , Pradaria , Oxigênio/análise , Oxigênio/metabolismo , Fotossíntese , Rios
5.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593902

RESUMO

Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon-leaf-wax lipids and lignin phenols-from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change-induced perturbations of soil OC turnover and stocks.


Assuntos
Carbono/análise , Carbono/metabolismo , Ecossistema , Sedimentos Geológicos/análise , Rios/química , Solo/química , Atmosfera , Ciclo do Carbono , Sequestro de Carbono , Clima , Temperatura
6.
Ecol Lett ; 26(5): 778-788, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36922740

RESUMO

Climate projection requires an accurate understanding for soil organic carbon (SOC) decomposition and its response to warming. An emergent view considers that environmental constraints rather than chemical structure alone control SOC turnover and its temperature sensitivity (i.e., Q10 ), but direct long-term evidence is lacking. Here, using compound-specific radiocarbon analysis of soil profiles along a 3300-km grassland transect, we provide direct evidence for the rapid turnover of lignin-derived phenols compared with slower-cycling molecular components of SOC (i.e., long-chain lipids and black carbon). Furthermore, in contrast to the slow-cycling components whose turnover is strongly modulated by mineral association and exhibits low Q10 , lignin turnover is mainly regulated by temperature and has a high Q10 . Such contrasts resemble those between fast-cycling (i.e., light) and mineral-associated slow-cycling fractions from globally distributed soils. Collectively, our results suggest that warming may greatly accelerate the decomposition of lignin, especially in soils with relatively weak mineral associations.


Assuntos
Carbono , Solo , Solo/química , Temperatura , Lignina , Minerais , Microbiologia do Solo
7.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220209, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37807682

RESUMO

The Anthropocene is defined by marked acceleration in human-induced perturbations to the Earth system. Anthropogenic emissions of CO2 and other greenhouse gases to the atmosphere and attendant changes to the global carbon cycle are among the most profound and pervasive of these perturbations. Determining the magnitude, nature and pace of these carbon cycle changes is crucial for understanding the future climate that ecosystems and humanity will experience and need to respond to. This special issue illustrates the value of radiocarbon as a tool to shed important light on the nature, magnitude and pace of carbon cycle change. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

8.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220328, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37807685

RESUMO

Compound- and compound class-specific radiocarbon analysis of source-diagnostic 'biomarker' molecules has emerged as a powerful tool to gain insights into terrestrial carbon cycling. While most studies thus far have focused on higher plant biomarkers (i.e. plant leaf-wax n-alkanoic acids and n-alkanes, lignin-derived phenols), tracing paedogenic carbon is crucial given the pivotal role of soils in modulating ecosystem carbon turnover and organic carbon (OC) export. Here, we determine the radiocarbon (14C) ages of glycerol dialkyl glycerol tetraethers (GDGTs) in riverine sediments and compare them to those of higher plant biomarkers as well as markers of pyrogenic (fire-derived) carbon (benzene polycarboxylic acids, BPCAs) to assess their potential as tracers of soil turnover and export. GDGT Δ14C follows similar relationships with basin properties as vegetation-derived lignin phenols and leaf-wax n-alkanoic acids, suggesting that the radiocarbon ages of these compounds are significantly impacted by intermittent soil storage. Systematic radiocarbon age offsets are observable between the studied biomarkers, which are likely caused by different mobilization pathways and/or stabilization by mineral association. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.


Assuntos
Carbono , Lignina , Ecossistema , Glicerol , Minerais , Solo , Fenóis , Biomarcadores
9.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220326, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37807683

RESUMO

Lateral carbon transport through the land-to-ocean-aquatic-continuum (LOAC) represents a key component of the global carbon cycle. This LOAC involves complex processes, many of which are prone to anthropogenic perturbation, yet the influence of natural and human-induced drivers remains poorly constrained. This study examines the radiocarbon (14C) signatures of particulate and dissolved organic carbon (POC, DOC) and dissolved inorganic carbon (DIC) transported by Swiss rivers to assess controls on sources and cycling of carbon within their watersheds. Twenty-one rivers were selected and sampled during high-flow conditions in summer 2021, a year of exceptionally high rainfall. Δ14C values of POC range from -446‰ to -158‰, while corresponding ranges of Δ14C values for DOC and DIC are -377‰ to -43‰ and -301‰ to -40‰, respectively, indicating the prevalence of pre-aged carbon. Region-specific agricultural practices seem to have an influential effect on all three carbon phases in rivers draining the Swiss Plateau. Based on Multivariate Regression Analysis, mean basin elevation correlated negatively with Δ14C values of all three carbon phases. These contrasts between alpine terrain and the lowlands reflect the importance of overriding ecoregional controls on riverine carbon dynamics within Switzerland, despite high spatial variability in catchment properties. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

10.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20230081, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37807687

RESUMO

Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced 14C in atmospheric, land and ocean carbon reservoirs. First, 14C-free carbon derived from fossil fuel burning has diluted 14C, at rates that have accelerated with time. Second, 'bomb' 14C produced by atmospheric nuclear weapon tests in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of air-sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other key C cycle processes. As we write, the 14C/12C ratio of atmospheric CO2 is dropping below pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel use and net exchange of bomb 14C between the atmosphere, ocean and land. This milestone coincides with a rapid increase in 14C measurement capacity worldwide. Leveraging future 14C measurements to understand processes and test models requires coordinated international effort-a 'decade of radiocarbon' with multiple goals: (i) filling observational gaps using archives, (ii) building and sustaining observation networks to increase measurement density across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv) establishing metrics for identifying and verifying changes in carbon sources and sinks. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

11.
Environ Sci Technol ; 55(15): 10852-10861, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34275289

RESUMO

Estuaries are action zones for organic carbon (OC) degradation and aging. These processes influence the nature of terrestrial OC (OCterr) export and the magnitude of OCterr burial in marginal seas, with important environmental implications such as CO2 release and hypoxia. In this study, we determined the contents and carbon isotopic compositions (13C and 14C) of bulk OC and fatty acids (FAs) as well as the sedimentological characteristics of suspended particulate matter (SPM) samples collected from two sites over four seasons and of surface sediment samples from three sites in the Pearl River estuary (PRE) to evaluate processes controlling OCterr degradation and aging along an estuarine gradient. We found that the abundance-weighted average C24-32FA 14C ages increased by an average of ∼1170 years for SPM and by an average of ∼3440 years in PR/PRE sediments, along the ∼60 km PRE transect. These increases in the FA age coincided with an 86% decrease in the corresponding mineral surface area-normalized FA loading along the sediment transport pathway, implying that selective degradation of labile and younger OC resulted in apparent OC aging. These measurements reveal an important shift in the nature of OC, with implications for biogeochemical cycling within estuaries and for regional environmental changes.


Assuntos
Estuários , Poluentes Químicos da Água , Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos , Rios , Poluentes Químicos da Água/análise
12.
Geophys Res Lett ; 47(15): e2020GL088561, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32999517

RESUMO

Collapse of permafrost coasts delivers large quantities of particulate organic carbon (POC) to Arctic coastal areas. With rapidly changing environmental conditions, sediment and organic carbon (OC) mobilization and transport pathways are also changing. Here, we assess the sources and sinks of POC in the highly dynamic nearshore zone of Herschel Island-Qikiqtaruk (Yukon, Canada). Our results show that POC concentrations sharply decrease, from 15.9 to 0.3 mg L-1, within the first 100-300 m offshore. Simultaneously, radiocarbon ages of POC drop from 16,400 to 3,600 14C years, indicating rapid settling of old permafrost POC to underlying sediments. This suggests that permafrost OC is, apart from a very narrow resuspension zone (<5 m water depth), predominantly deposited in nearshore sediments. While long-term storage of permafrost OC in marine sediments potentially limits biodegradation and its subsequent release as greenhouse gas, resuspension of fine-grained, OC-rich sediments in the nearshore zone potentially enhances OC turnover.

13.
Geophys Res Lett ; 47(23): e2020GL088823, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33380763

RESUMO

Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We examine the radiocarbon activity (F14C) of dissolved organic carbon (DOC) in the northern Mackenzie River basin. From 2003-2017, DOC-F14C signatures (1.00 ± 0.04; n = 39) tracked atmospheric 14CO2, indicating export of "modern" carbon. This trend was interrupted in June 2018 by the widespread release of aged DOC (0.85 ± 0.16, n = 28) measured across three separate catchment areas. Increased nitrate concentrations in June 2018 lead us to attribute this pulse of 14C-depleted DOC to mobilization of previously frozen soil organic matter. We propose export through lateral perennial thaw zones that occurred at the base of the active layer weakened by preceding warm summer and winter seasons. Although we are not yet able to ascertain the broader significance of this "anomalous" mobilization event, it highlights the potential for rapid and large-scale release of aged carbon from permafrost.

14.
Glob Chang Biol ; 25(12): 4383-4393, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31479577

RESUMO

Subsoil contains more than half of soil organic carbon (SOC) globally and is conventionally assumed to be relatively unresponsive to warming compared to the topsoil. Here, we show substantial changes in carbon allocation and dynamics of the subsoil but not topsoil in the Qinghai-Tibetan alpine grasslands over 5 years of warming. Specifically, warming enhanced the accumulation of newly synthesized (14 C-enriched) carbon in the subsoil slow-cycling pool (silt-clay fraction) but promoted the decomposition of plant-derived lignin in the fast-cycling pool (macroaggregates). These changes mirrored an accumulation of lipids and sugars at the expense of lignin in the warmed bulk subsoil, likely associated with shortened soil freezing period and a deepening root system. As warming is accompanied by deepening roots in a wide range of ecosystems, root-driven accrual of slow-cycling pool may represent an important and overlooked mechanism for a potential long-term carbon sink at depth. Moreover, given the contrasting sensitivity of SOC dynamics at varied depths, warming studies focusing only on surface soils may vastly misrepresent shifts in ecosystem carbon storage under climate change.


Assuntos
Carbono , Pradaria , Sequestro de Carbono , Ecossistema , Solo
15.
Environ Sci Technol ; 53(3): 1119-1129, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30624054

RESUMO

Natural and human-induced hydrological changes can influence organic carbon (OC) composition in fluvial systems, with biogeochemical consequences in both terrestrial and marine environments. Here, we use bulk and molecular carbon isotopes (13C and 14C) to examine spatiotemporal variations in particulate OC (POC) composition and age from two locations along the course of the Yellow River during 2015 and 2016. Dual carbon isotopes enable deconvolution of modern, pre-aged (millennial age) soil, and fossil inputs, revealing heterogeneous OC sources at both sites. Pre-aged OC predominated at the upstream site (Huayuankou) throughout the study period, mostly reflecting the upper riverine OC. Strong downstream (Kenli) intra-annual variations in modern and pre-aged OC were caused by increased contributions from modern aquatic OC production under the drier and less turbid conditions during this El Niño year. The month of July, which included the human-induced water and sediment regulation (WSR) event at Kenli, accounted for 82% of annual POC flux, with lower modern OC contribution compared with periods of natural seasonal variability. Both natural and human-induced hydrological events clearly exert strong influence on both fluxes and composition of Yellow River POC which, in turn, affect the balance between OC remineralization and burial for this major fluvial system.


Assuntos
Carbono , Sedimentos Geológicos , Isótopos de Carbono , Humanos , Hidrologia , Rios
16.
Environ Sci Technol ; 53(14): 8244-8251, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31259540

RESUMO

Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735-1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments with radiocarbon (14C) data of higher plant leaf-wax n-alkanoic acids. Isotope-mass balance-calculations of perylene and n-alkanoic acids indicate that ∼40% of sedimentary organic matter is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and are insensitive to elevated 14C concentrations following nuclear weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional flux during urban sprawl. These findings suggest that perylene is definitely a product of soil-derived fungi, and a powerful chemical tracer to study the spatial and temporal connectivity between terrestrial and aquatic environments.


Assuntos
Perileno , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Alocação de Recursos
17.
Anal Chem ; 90(20): 12035-12041, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30220201

RESUMO

We have improved a method for isolation and purification of individual amino acids for compound-specific radiocarbon analysis (CSRA). To remove high-performance liquid chromatography (HPLC) eluent blanks from isolated amino acid fractions prior to the radiocarbon (Δ14C) measurement, each fraction was filtered through a membrane filter and then washed with diethyl ether twice. Radiocarbon measurements on standard amino acids processed and purified with the above method using elemental analyzer-accelerator mass spectrometry resulted in Δ14C values that were in strong agreement ( R2 = 0.998) with the original Δ14C value of each amino acid standard. From these measurements, we calculate dead and modern carbon contamination contributions as 1.2 ± 0.2 and 0.3 ± 0.1 µgC, respectively, which are consistent with direct assessments of HPLC procedural blanks of 1.0 ± 0.8 µgC per sample. These contamination constraints allow correction of measured Δ14C values for accurate and precise CSRA and are widely applicable to future archeological and biogeochemical studies.


Assuntos
Aminoácidos/isolamento & purificação , Radioisótopos de Carbono/análise , Aminoácidos/química , Cromatografia Líquida de Alta Pressão
18.
Proc Natl Acad Sci U S A ; 112(18): 5607-12, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902508

RESUMO

Paleoclimate records indicate a series of severe droughts was associated with societal collapse of the Classic Maya during the Terminal Classic period (∼800-950 C.E.). Evidence for drought largely derives from the drier, less populated northern Maya Lowlands but does not explain more pronounced and earlier societal disruption in the relatively humid southern Maya Lowlands. Here we apply hydrogen and carbon isotope compositions of plant wax lipids in two lake sediment cores to assess changes in water availability and land use in both the northern and southern Maya lowlands. We show that relatively more intense drying occurred in the southern lowlands than in the northern lowlands during the Terminal Classic period, consistent with earlier and more persistent societal decline in the south. Our results also indicate a period of substantial drying in the southern Maya Lowlands from ∼200 C.E. to 500 C.E., during the Terminal Preclassic and Early Classic periods. Plant wax carbon isotope records indicate a decline in C4 plants in both lake catchments during the Early Classic period, interpreted to reflect a shift from extensive agriculture to intensive, water-conservative maize cultivation that was motivated by a drying climate. Our results imply that agricultural adaptations developed in response to earlier droughts were initially successful, but failed under the more severe droughts of the Terminal Classic period.


Assuntos
Aclimatação , Agricultura/história , Secas/história , Ecossistema , Agricultura/métodos , Agricultura/tendências , Civilização/história , Clima , Mudança Climática , Meio Ambiente , Geografia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , História Antiga , Humanos , Indígenas Sul-Americanos/história , Lipídeos/análise , México , Isótopos de Oxigênio , Plantas/química , Chuva , Fatores de Tempo , Ceras/análise
19.
Environ Sci Technol ; 51(21): 12972-12980, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28994589

RESUMO

Humans have interacted with fire for thousands of years, yet the utilization of fossil fuels marked the beginning of a new era. Ubiquitous in the environment, pyrogenic carbon (PyC) arises from incomplete combustion of biomass and fossil fuels, forming a continuum of condensed aromatic structures. Here, we develop and evaluate 14C records for two complementary PyC molecular markers, benzene polycarboxylic acids (BPCAs) and polycyclic aromatic hydrocarbons (PAHs), preserved in aquatic sediments from a suburban and a remote catchment in the United States (U.S.) from the mid-1700s to 1998. Results show that the majority of PyC stems from local sources and is transferred to aquatic sedimentary archives on subdecadal to millennial time scales. Whereas a small portion stems from near-contemporaneous production and sedimentation, the majority of PyC (∼90%) experiences delayed transmission due to "preaging" on millennial time scales in catchment soils prior to its ultimate deposition. BPCAs (soot) and PAHs (precursors of soot) trace fossil fuel-derived PyC. Both markers parallel historical records of the consumption of fossil fuels in the U.S., yet never account for more than 19% total PyC. This study demonstrates that isotopic characterization of multiple tracers is necessary to constrain histories and inventories of PyC and that sequestration of PyC can markedly lag its production.


Assuntos
Carbono , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Combustíveis Fósseis , Sedimentos Geológicos , Humanos , Fuligem
20.
Proc Natl Acad Sci U S A ; 110(35): 14168-73, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940354

RESUMO

Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol (14)C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA