Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 38(3): 544-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25052912

RESUMO

Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Transdução de Sinais , Zea mays/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Resposta ao Choque Frio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Zea mays/genética , Zea mays/fisiologia
2.
J Exp Bot ; 59(13): 3635-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18757490

RESUMO

The tomato (Solanum lycopersicum) sulfurea mutation displays trans-inactivation of wild-type alleles in heterozygous plants, a phenomenon referred to as paramutation. Homozygous mutant plants and paramutated leaf tissue of heterozygous plants show a pigment-deficient phenotype. The molecular basis of this phenotype and the function of the SULFUREA gene (SULF) are unknown. Here, a comprehensive physiological analysis of the sulfurea mutant is reported which suggests a molecular function for the SULFUREA locus. It is found that the sulf mutant is auxin-deficient and that the pigment-deficient phenotype is likely to represent only a secondary consequence of the auxin deficiency. This is most strongly supported by the isolation of a suppressor mutant which shows an auxin overaccumulation phenotype and contains elevated levels of indole-3-acetic acid (IAA). Several lines of evidence point to a role of the SULF gene in tryptophan-independent auxin biosynthesis, a pathway whose biochemistry and enzymology is still completely unknown. Thus, the sulfurea mutant may provide a promising entry point into elucidating the tryptophan-independent pathway of IAA synthesis.


Assuntos
Ácidos Indolacéticos/metabolismo , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Fenótipo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Pigmentos Biológicos/metabolismo , Supressão Genética , Triptofano/metabolismo
3.
Mol Plant ; 4(1): 83-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20978086

RESUMO

Calcium-dependent protein kinases (CDPKs) comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule. So far, a biological function in abiotic stress signaling has only been reported for few CDPK isoforms, whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown. Here, we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress. Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation. In transgenic Arabidopsis complementation lines in the cpk21 mutant background, in which either CPK21 wild-type, or a full-length enzyme variant carrying an amino-acid substitution were stably expressed, stress responsitivity was restored by CPK21 but not with the kinase inactive variant. The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain, N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity, suggesting a crucial role for the N-terminal EF-hand pair. Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas Quinases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Osmose , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Estresse Fisiológico
4.
Plant Methods ; 4: 12, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18505561

RESUMO

BACKGROUND: Freezing tolerance is an important factor in the geographical distribution of plants and strongly influences crop yield. Many plants increase their freezing tolerance during exposure to low, nonfreezing temperatures in a process termed cold acclimation. There is considerable natural variation in the cold acclimation capacity of Arabidopsis that has been used to study the molecular basis of this trait. Accurate methods for the quantitation of freezing damage in leaves that include spatial information about the distribution of damage and the possibility to screen large populations of plants are necessary, but currently not available. In addition, currently used standard methods such as electrolyte leakage assays are very laborious and therefore not easily applicable for large-scale screening purposes. RESULTS: We have performed freezing experiments with the Arabidopsis accessions C24 and Tenela, which differ strongly in their freezing tolerance, both before and after cold acclimation. Freezing tolerance of detached leaves was investigated using the well established electrolyte leakage assay as a reference. Chlorophyll fluorescence imaging was used as an alternative method that provides spatial resolution of freezing damage over the leaf area. With both methods, LT50 values (i.e. temperature where 50% damage occurred) could be derived as quantitative measures of leaf freezing tolerance. Both methods revealed the expected differences between acclimated and nonacclimated plants and between the two accessions and LT50 values were tightly correlated. However, electrolyte leakage assays consistently yielded higher LT50 values than chlorophyll fluorescence imaging. This was to a large part due to the incubation of leaves for electrolyte leakage measurements in distilled water, which apparently led to secondary damage, while this pre-incubation was not necessary for the chlorophyll fluorescence measurements. CONCLUSION: Chlorophyll fluorescence imaging is an alternative method to accurately determine the freezing tolerance of leaves. It is quick and inexpensive and the system could potentially be used for large scale screening, allowing new approaches to elucidate the molecular basis of plant freezing tolerance.

5.
Plant J ; 48(6): 857-72, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17092313

RESUMO

Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Expressão Gênica , Pressão Osmótica , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA