Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mod Pathol ; 31(10): 1502-1512, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29899550

RESUMO

The breast stromal microenvironment is a pivotal factor in breast cancer development, growth and metastases. Although pathologists often detect morphologic changes in stroma by light microscopy, visual classification of such changes is subjective and non-quantitative, limiting its diagnostic utility. To gain insights into stromal changes associated with breast cancer, we applied automated machine learning techniques to digital images of 2387 hematoxylin and eosin stained tissue sections of benign and malignant image-guided breast biopsies performed to investigate mammographic abnormalities among 882 patients, ages 40-65 years, that were enrolled in the Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project. Using deep convolutional neural networks, we trained an algorithm to discriminate between stroma surrounding invasive cancer and stroma from benign biopsies. In test sets (928 whole-slide images from 330 patients), this algorithm could distinguish biopsies diagnosed as invasive cancer from benign biopsies solely based on the stromal characteristics (area under the receiver operator characteristics curve = 0.962). Furthermore, without being trained specifically using ductal carcinoma in situ as an outcome, the algorithm detected tumor-associated stroma in greater amounts and at larger distances from grade 3 versus grade 1 ductal carcinoma in situ. Collectively, these results suggest that algorithms based on deep convolutional neural networks that evaluate only stroma may prove useful to classify breast biopsies and aid in understanding and evaluating the biology of breast lesions.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Aprendizado Profundo , Microambiente Tumoral , Adulto , Idoso , Biópsia , Feminino , Humanos , Pessoa de Meia-Idade
2.
JAMA ; 318(22): 2199-2210, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234806

RESUMO

Importance: Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. Design, Setting, and Participants: Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures: Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures: The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results: The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). Conclusions and Relevance: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.


Assuntos
Neoplasias da Mama/patologia , Metástase Linfática/diagnóstico , Aprendizado de Máquina , Patologistas , Algoritmos , Feminino , Humanos , Metástase Linfática/patologia , Patologia Clínica , Curva ROC
3.
Cell Oncol (Dordr) ; 42(3): 331-341, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30825182

RESUMO

PURPOSE: Tumor-stroma ratio (TSR) serves as an independent prognostic factor in colorectal cancer and other solid malignancies. The recent introduction of digital pathology in routine tissue diagnostics holds opportunities for automated TSR analysis. We investigated the potential of computer-aided quantification of intratumoral stroma in rectal cancer whole-slide images. METHODS: Histological slides from 129 rectal adenocarcinoma patients were analyzed by two experts who selected a suitable stroma hot-spot and visually assessed TSR. A semi-automatic method based on deep learning was trained to segment all relevant tissue types in rectal cancer histology and subsequently applied to the hot-spots provided by the experts. Patients were assigned to a 'stroma-high' or 'stroma-low' group by both TSR methods (visual and automated). This allowed for prognostic comparison between the two methods in terms of disease-specific and disease-free survival times. RESULTS: With stroma-low as baseline, automated TSR was found to be prognostic independent of age, gender, pT-stage, lymph node status, tumor grade, and whether adjuvant therapy was given, both for disease-specific survival (hazard ratio = 2.48 (95% confidence interval 1.29-4.78)) and for disease-free survival (hazard ratio = 2.05 (95% confidence interval 1.11-3.78)). Visually assessed TSR did not serve as an independent prognostic factor in multivariate analysis. CONCLUSIONS: This work shows that TSR is an independent prognosticator in rectal cancer when assessed automatically in user-provided stroma hot-spots. The deep learning-based technology presented here may be a significant aid to pathologists in routine diagnostics.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador/métodos , Neoplasias Retais/diagnóstico , Células Estromais/patologia , Idoso , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Patologia Clínica/métodos , Prognóstico
4.
NPJ Breast Cancer ; 5: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754628

RESUMO

Breast density, a breast cancer risk factor, is a radiologic feature that reflects fibroglandular tissue content relative to breast area or volume. Its histology is incompletely characterized. Here we use deep learning approaches to identify histologic correlates in radiologically-guided biopsies that may underlie breast density and distinguish cancer among women with elevated and low density. We evaluated hematoxylin and eosin (H&E)-stained digitized images from image-guided breast biopsies (n = 852 patients). Breast density was assessed as global and localized fibroglandular volume (%). A convolutional neural network characterized H&E composition. In total 37 features were extracted from the network output, describing tissue quantities and morphological structure. A random forest regression model was trained to identify correlates most predictive of fibroglandular volume (n = 588). Correlations between predicted and radiologically quantified fibroglandular volume were assessed in 264 independent patients. A second random forest classifier was trained to predict diagnosis (invasive vs. benign); performance was assessed using area under receiver-operating characteristics curves (AUC). Using extracted features, regression models predicted global (r = 0.94) and localized (r = 0.93) fibroglandular volume, with fat and non-fatty stromal content representing the strongest correlates, followed by epithelial organization rather than quantity. For predicting cancer among high and low fibroglandular volume, the classifier achieved AUCs of 0.92 and 0.84, respectively, with epithelial organizational features ranking most important. These results suggest non-fatty stroma, fat tissue quantities and epithelial region organization predict fibroglandular volume. The model holds promise for identifying histological correlates of cancer risk in patients with high and low density and warrants further evaluation.

5.
IEEE Trans Med Imaging ; 38(2): 550-560, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716025

RESUMO

Automated detection of cancer metastases in lymph nodes has the potential to improve the assessment of prognosis for patients. To enable fair comparison between the algorithms for this purpose, we set up the CAMELYON17 challenge in conjunction with the IEEE International Symposium on Biomedical Imaging 2017 Conference in Melbourne. Over 300 participants registered on the challenge website, of which 23 teams submitted a total of 37 algorithms before the initial deadline. Participants were provided with 899 whole-slide images (WSIs) for developing their algorithms. The developed algorithms were evaluated based on the test set encompassing 100 patients and 500 WSIs. The evaluation metric used was a quadratic weighted Cohen's kappa. We discuss the algorithmic details of the 10 best pre-conference and two post-conference submissions. All these participants used convolutional neural networks in combination with pre- and postprocessing steps. Algorithms differed mostly in neural network architecture, training strategy, and pre- and postprocessing methodology. Overall, the kappa metric ranged from 0.89 to -0.13 across all submissions. The best results were obtained with pre-trained architectures such as ResNet. Confusion matrix analysis revealed that all participants struggled with reliably identifying isolated tumor cells, the smallest type of metastasis, with detection rates below 40%. Qualitative inspection of the results of the top participants showed categories of false positives, such as nerves or contamination, which could be targeted for further optimization. Last, we show that simple combinations of the top algorithms result in higher kappa metric values than any algorithm individually, with 0.93 for the best combination.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Metástase Linfática/diagnóstico por imagem , Linfonodo Sentinela/diagnóstico por imagem , Algoritmos , Neoplasias da Mama/patologia , Feminino , Técnicas Histológicas , Humanos , Metástase Linfática/patologia , Linfonodo Sentinela/patologia
6.
Gigascience ; 7(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860392

RESUMO

Background: The presence of lymph node metastases is one of the most important factors in breast cancer prognosis. The most common way to assess regional lymph node status is the sentinel lymph node procedure. The sentinel lymph node is the most likely lymph node to contain metastasized cancer cells and is excised, histopathologically processed, and examined by a pathologist. This tedious examination process is time-consuming and can lead to small metastases being missed. However, recent advances in whole-slide imaging and machine learning have opened an avenue for analysis of digitized lymph node sections with computer algorithms. For example, convolutional neural networks, a type of machine-learning algorithm, can be used to automatically detect cancer metastases in lymph nodes with high accuracy. To train machine-learning models, large, well-curated datasets are needed. Results: We released a dataset of 1,399 annotated whole-slide images (WSIs) of lymph nodes, both with and without metastases, in 3 terabytes of data in the context of the CAMELYON16 and CAMELYON17 Grand Challenges. Slides were collected from five medical centers to cover a broad range of image appearance and staining variations. Each WSI has a slide-level label indicating whether it contains no metastases, macro-metastases, micro-metastases, or isolated tumor cells. Furthermore, for 209 WSIs, detailed hand-drawn contours for all metastases are provided. Last, open-source software tools to visualize and interact with the data have been made available. Conclusions: A unique dataset of annotated, whole-slide digital histopathology images has been provided with high potential for re-use.


Assuntos
Neoplasias da Mama/patologia , Bases de Dados como Assunto , Linfonodo Sentinela/patologia , Coloração e Rotulagem , Algoritmos , Feminino , Humanos , Metástase Linfática/patologia , Estadiamento de Neoplasias
7.
Med Phys ; 44(3): 935-948, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28064435

RESUMO

PURPOSE: In breast imaging, radiological in vivo images, such as x-ray mammography and magnetic resonance imaging (MRI), are used for tumor detection, diagnosis, and size determination. After excision, the specimen is typically sliced into slabs and a small subset is sampled. Histopathological imaging of the stained samples is used as the gold standard for characterization of the tumor microenvironment. A 3D volume reconstruction of the whole specimen from the 2D slabs could facilitate bridging the gap between histology and in vivo radiological imaging. This task is challenging, however, due to the large deformation that the breast tissue undergoes after surgery and the significant undersampling of the specimen obtained in histology. In this work, we present a method to reconstruct a coherent 3D volume from 2D digital radiographs of the specimen slabs. METHODS: To reconstruct a 3D breast specimen volume, we propose the use of multiple target neighboring slices, when deforming each 2D slab radiograph in the volume, rather than performing pairwise registrations. The algorithm combines neighborhood slice information with free-form deformations, which enables a flexible, nonlinear deformation to be computed subject to the constraint that a coherent 3D volume is obtained. The neighborhood information provides adequate constraints, without the need for any additional regularization terms. RESULTS: The volume reconstruction algorithm is validated on clinical mastectomy samples using a quantitative assessment of the volume reconstruction smoothness and a comparison with a whole specimen 3D image acquired for validation before slicing. Additionally, a target registration error of 5 mm (comparable to the specimen slab thickness of 4 mm) was obtained for five cases. The error was computed using manual annotations from four observers as gold standard, with interobserver variability of 3.4 mm. Finally, we illustrate how the reconstructed volumes can be used to map histology images to a 3D specimen image of the whole sample (either MRI or CT). CONCLUSIONS: Qualitative and quantitative assessment has illustrated the benefit of using our proposed methodology to reconstruct a coherent specimen volume from serial slab radiographs. To our knowledge, this is the first method that has been applied to clinical breast cases, with the goal of reconstructing a whole specimen sample. The algorithm can be used as part of the pipeline of mapping histology images to ex vivo and ultimately in vivo radiological images of the breast.


Assuntos
Algoritmos , Mama/diagnóstico por imagem , Mama/patologia , Técnicas Histológicas/métodos , Imageamento Tridimensional/métodos , Mamografia/métodos , Artefatos , Mama/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Dinâmica não Linear , Variações Dependentes do Observador , Tomografia Computadorizada por Raios X/métodos
8.
IEEE Trans Med Imaging ; 35(9): 2141-2150, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27076354

RESUMO

This paper presents and evaluates a fully automatic method for detection of ductal carcinoma in situ (DCIS) in digitized hematoxylin and eosin (H&E) stained histopathological slides of breast tissue. The proposed method applies multi-scale superpixel classification to detect epithelial regions in whole-slide images (WSIs). Subsequently, spatial clustering is utilized to delineate regions representing meaningful structures within the tissue such as ducts and lobules. A region-based classifier employing a large set of features including statistical and structural texture features and architectural features is then trained to discriminate between DCIS and benign/normal structures. The system is evaluated on two datasets containing a total of 205 WSIs of breast tissue. Evaluation was conducted both on the slide and the lesion level using FROC analysis. The results show that to detect at least one true positive in every DCIS containing slide, the system finds 2.6 false positives per WSI. The results of the per-lesion evaluation show that it is possible to detect 80% and 83% of the DCIS lesions in an abnormal slide, at an average of 2.0 and 3.0 false positives per WSI, respectively. Collectively, the result of the experiments demonstrate the efficacy and accuracy of the proposed method as well as its potential for application in routine pathological diagnostics. To the best of our knowledge, this is the first DCIS detection algorithm working fully automatically on WSIs.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Algoritmos , Mama , Carcinoma Ductal de Mama , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-23367143

RESUMO

This paper presents an automated algorithm for robustly detecting and segmenting free-lying cell nuclei in bright-field microscope images of Pap smears. This is an essential initial step in the development of an automated screening system for cervical cancer based on malignancy associated change (MAC) analysis. The proposed segmentation algorithm makes use of gray-scale annular closings to identify free-lying nuclei-like objects together with marker-based watershed segmentation to accurately delineate the nuclear boundaries. The algorithm also employs artifact rejection based on size, shape, and granularity to ensure only the nuclei of intermediate squamous epithelial cells are retained. An evaluation of the performance of the algorithm relative to expert manual segmentation of 33 fields-of-view from 11 Pap smear slides is also presented. The results show that the sensitivity and specificity of nucleus detection is 94.71% and 85.30% respectively, and that the accuracy of segmentation, measured using the Dice coefficient, of the detected nuclei is 97.30±1.3%.


Assuntos
Automação , Teste de Papanicolaou , Neoplasias do Colo do Útero/diagnóstico , Esfregaço Vaginal , Algoritmos , Feminino , Humanos , Microscopia , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA