Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Spine J ; 32(4): 1173-1186, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871254

RESUMO

PURPOSE: To evaluate the motion-preserving properties of vertebral body tethering with varying cord/screw constructs and cord thicknesses in cadaveric thoracolumbar spines. METHODS: In vitro flexibility tests were performed on six fresh-frozen human cadaveric spines (T1-L5) (2 M, 4F) with a median age of 63 (59-to-80). An ± 8 Nm load was applied to determine range of motion (ROM) in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) in the thoracic and lumbar spine. Specimens were tested with screws (T5-L4) and without cords. Single (4.0 mm and 5.0 mm) and double (4.0 mm) cord constructs were sequentially tensioned to 100 N and tested: (1) Single 4.0 mm and (2) 5.0 mm cords (T5-T12); (3) Double 4.0 mm cords (T5-12); (4) Single 4.0 mm and (5) 5.0 mm cord (T12-L4); (6) Double 4.0 mm cords (T12-L4). RESULTS: In the thoracic spine (T5-T12), 4.0-5.0 mm single-cord constructs showed slight reductions in FE and 27-33% reductions in LB compared to intact, while double-cord constructs showed reductions of 24% and 40%, respectively. In the lumbar spine (T12-L4), double-cord constructs had greater reductions in FE (24%), LB (74%), and AR (25%) compared to intact, while single-cord constructs exhibited reductions of 2-4%, 68-69%, and 19-20%, respectively. CONCLUSIONS: The present biomechanical study found similar motion for 4.0-5.0 mm single-cord constructs and the least motion for double-cord constructs in the thoracic and lumbar spine suggesting that larger diameter 5.0 mm cords may be a more promising motion-preserving option, due to their increased durability compared to smaller cords. Future clinical studies are necessary to determine the impact of these findings on patient outcomes.


Assuntos
Escoliose , Fusão Vertebral , Humanos , Escoliose/cirurgia , Fenômenos Biomecânicos , Vértebras Lombares/cirurgia , Parafusos Ósseos , Amplitude de Movimento Articular , Cadáver
2.
Hum Mov Sci ; 89: 103070, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36878025

RESUMO

Despite progress in understanding the mechanisms governing walking balance control, the number of falls in our older adult population is projected to increase. Falls prevention systems and strategies may benefit from understanding how anticipation of a balance perturbation affects the planning and execution of biomechanical responses to mitigate instability. However, the extent to which anticipation affects the proactive and reactive adjustments to perturbations has yet to be fully investigated, even in young adults. Our purpose was to investigate the effects of anticipation on susceptibility to two different mechanical balance perturbations - namely, treadmill-induced perturbations and impulsive waist-pull perturbations. Twenty young adults (mean ± standard deviation age: 22.8 ± 3.3 years) walked on a treadmill without perturbations and while responding to treadmill belt (200 ms, 6 m/s2) and waist-pull (100 ms, 6% body weight) perturbations delivered in the anterior and posterior directions. We used 3D motion capture to calculate susceptibility to perturbations during the perturbed and preceding strides via whole-body angular momentum (WBAM) and anterior-posterior margin of stability (MoSAP). Contrary to our hypotheses, anticipation did not affect young adults' susceptibility to walking balance challenges. Conversely, perturbation direction significantly affected walking instability. We also found that susceptibility to different perturbation contexts is dependent on the outcome measure chosen. We suggest that the absence of an effect of anticipation on susceptibility to walking balance perturbations in healthy young adults is a consequence of their having high confidence in their reactive balance integrity. These data provide a pivotal benchmark for the future identification of how anticipation of a balance challenge affects proactive and reactive balance control in populations at risk of falls.


Assuntos
Marcha , Equilíbrio Postural , Humanos , Adulto Jovem , Idoso , Adulto , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Caminhada/fisiologia , Teste de Esforço , Fenômenos Biomecânicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38082824

RESUMO

Early detection of cognitive decline is essential to study mild cognitive impairment and Alzheimer's Disease in order to develop targeted interventions and prevent or stop the progression of dementia. This requires continuous and longitudinal assessment and tracking of the related physiological and behavioral changes during daily life. In this paper, we present a low cost and low power wearable system custom designed to track the trends in speech, gait, and cognitive stress while also considering the important human factor needs such as privacy and compliance. In the form factors of a wristband and waist-patch, this multimodal, multi-sensor system measures inertial signals, sound, heart rate, electrodermal activity and pulse transit time. A total power consumption of 2.6 mW without any duty cycling allows for more than 3 weeks of run time between charges when 1500 mAh batteries are used.Clinical Relevance- Much earlier detection of Alzheimer's disease and related dementias may be possible by continuous monitoring of physiological and behavioral state using application specific wearable sensors during the activities of daily life.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Dispositivos Eletrônicos Vestíveis , Humanos , Doença de Alzheimer/diagnóstico , Fala , Disfunção Cognitiva/diagnóstico , Marcha , Diagnóstico Precoce
4.
J Orthop Trauma ; 36(8): 400-405, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999627

RESUMO

OBJECTIVES: To evaluate the effect of a traditional "center-center" end point for distal tibia nailing in comparison with a lateral-of-center end point on fracture malalignment in a cadaver model. METHODS: Nine matched pairs of human cadaveric lower-extremity specimens were used to model the effect of nail end point on fracture alignment in extra-articular distal tibia fractures. After simulation of the fracture through a standardized osteotomy, 1 member of each pair was fixed with an intramedullary nail using a "center-center" end point, whereas a lateral-of-center end point was used for the other member of the pair. Specimens were stripped of soft tissue, and digital calipers were used to measure fracture translation and gap medially, laterally, anteriorly, and posteriorly. Coronal plane angulation at each fracture was measured on the final mortise image. RESULTS: The average coronal angulation was 7.0 degrees of valgus (with a SD of 4.1) in central-end point specimens versus 0.2 degrees of valgus (SD = 1.5) in lateral-end point specimens ( P < 0.001). Lateral-end point specimens also demonstrated significantly less fracture gap medially (mean 0.2 vs. 3.1 mm for central-end point specimens, P < 0.001), anteriorly (mean 0.1 vs. 1.3 mm, P = 0.003), and posteriorly (mean 0.3 vs. 2.2 mm, P = 0.003). Lateral-end point specimens also showed less lateral translation (mean 0.6 vs. 1.6 mm, P = 0.006). CONCLUSIONS: Lateral-of-center nail end points may help surgeons restore native alignment in extra-articular distal tibia fractures and avoid valgus malalignment.


Assuntos
Fraturas do Tornozelo , Fixação Intramedular de Fraturas , Fraturas da Tíbia , Pinos Ortopédicos , Fixação Intramedular de Fraturas/métodos , Humanos , Osteotomia , Tíbia/cirurgia , Fraturas da Tíbia/cirurgia
5.
Front Bioeng Biotechnol ; 9: 626433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889568

RESUMO

Tendon and ligament injuries are triggered by mechanical loading, but the specific mechanisms are not yet clearly identified. It is well established however, that the inflection and transition points in tendon stress-strain curves represent thresholds that may signal the onset of irreversible fibrillar sliding. This phenomenon often results in a progressive macroscopic failure of these tissues. With the aim to simulate and replace tendons, electrospinning has been demonstrated to be a suitable technology to produce nanofibers similar to the collagen fibrils in a mat form. These nanofibrous mats can be easily assembled in higher hierarchical levels to reproduce the whole tissue structure. Despite the fact that several groups have developed electrospun tendon-inspired structures, an investigation of the inflection and transition point mechanics is missing. Comparing their behavior with that of the natural counterpart is important to adequately replicate their behavior at physiological strain levels. To fill this gap, in this work fascicle-inspired electrospun nylon 6,6 bundles were produced with different collector peripheral speeds (i.e., 19.7 m s-1; 13.7 m s-1; 7.9 m s-1), obtaining different patterns of nanofibers alignment. The scanning electron microcopy revealed a fibril-inspired structure of the nanofibers with an orientation at the higher speed similar to those in tendons and ligaments (T/L). A tensile mechanical characterization was carried out showing an elastic-brittle biomimetic behavior for the higher speed bundles with a progressively more ductile behavior at slower speeds. Moreover, for each sample category the transition and the inflection points were defined to study how these points can shift with the nanofiber arrangement and to compare their values with those of tendons. The results of this study will be of extreme interest for the material scientists working in the field, to model and improve the design of their electrospun structures and scaffolds and enable building a new generation of artificial tendons and ligaments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA