Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 15: 436, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26016476

RESUMO

BACKGROUND: Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. METHODS: Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. RESULTS: Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. CONCLUSIONS: These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Proteína Adaptadora GRB2/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/farmacologia , Avaliação Pré-Clínica de Medicamentos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
2.
J Immunol ; 191(10): 5256-67, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24127555

RESUMO

KIR2DL4 (CD158d) is a distinct member of the killer cell Ig-like receptor (KIR) family in human NK cells that can induce cytokine production and cytolytic activity in resting NK cells. Soluble HLA-G, normally expressed only by fetal-derived trophoblast cells, was reported to be a ligand for KIR2DL4; however, KIR2DL4 expression is not restricted to the placenta and can be found in CD56(high) subset of peripheral blood NK cells. We demonstrated that KIR2DL4 can interact with alternative ligand(s), expressed by cells of epithelial or fibroblast origin. A genome-wide high-throughput siRNA screen revealed that KIR2DL4 recognition of cell-surface ligand(s) is directly regulated by heparan sulfate (HS) glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1). KIR2DL4 was found to directly interact with HS/heparin, and the D0 domain of KIR2DL4 was essential for this interaction. Accordingly, exogenous HS/heparin can regulate cytokine production by KIR2DL4-expressing NK cells and HEK293T cells (HEK293T-2DL4), and induces differential localization of KIR2DL4 to rab5(+) and rab7(+) endosomes, thus leading to downregulation of cytokine production and degradation of the receptor. Furthermore, we showed that intimate interaction of syndecan-4 (SDC4) HS proteoglycan (HSPG) and KIR2DL4 directly affects receptor endocytosis and membrane trafficking.


Assuntos
Heparitina Sulfato/metabolismo , Células Matadoras Naturais/imunologia , Receptores KIR2DL4/metabolismo , Sulfotransferases/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Linhagem Celular , Cricetulus , Endocitose , Células HEK293 , Heparina/metabolismo , Humanos , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno , Receptores KIR2DL4/genética , Receptores KIR2DL4/imunologia , Transdução de Sinais/imunologia , Sindecana-4/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712276

RESUMO

Dual leucine-zipper kinase (DLK) drives acute and chronic forms of neurodegeneration, suggesting that inhibiting DLK signaling could ameliorate diverse neuropathological conditions. However, direct inhibition of DLK's kinase domain in human patients and conditional knockout of DLK in mice both cause unintended side effects, including elevated plasma neurofilament levels, indicative of neuronal cytoskeletal disruption. Indeed, we found that a DLK kinase domain inhibitor acutely disrupted the axonal cytoskeleton and caused vesicle aggregation in cultured dorsal root ganglion (DRG) neurons, further cautioning against this therapeutic strategy. In seeking a more precise intervention, we found that retrograde (axon-to-soma) pro-degenerative signaling requires acute, axonal palmitoylation of DLK and hypothesized that modulating this post-translational modification might be more specifically neuroprotective than cell-wide DLK inhibition. To address this possibility, we screened >28,000 compounds using a high-content imaging assay that quantitatively evaluates DLK's palmitoylation-dependent subcellular localization. Of the 33 hits that significantly altered DLK localization in non-neuronal cells, several reduced DLK retrograde signaling and protected cultured DRG neurons from DLK-dependent neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent stimulus-dependent palmitoylation of axonal pools of DLK, a process crucial for DLK's recruitment to axonal vesicles. In contrast, these compounds minimally impact DLK localization and signaling in healthy neurons and avoid the cytoskeletal disruption associated with direct DLK inhibition. Importantly, our hit compounds also reduce pro-degenerative retrograde signaling in vivo, suggesting that modulating DLK's palmitoylation-dependent localization could be a novel neuroprotective strategy.

4.
Nat Commun ; 14(1): 4513, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500647

RESUMO

This phase I, dose-escalation trial evaluates the safety of combining interferon-gamma (IFN-γ) and nivolumab in patients with metastatic solid tumors. Twenty-six patients are treated in four cohorts assessing increasing doses of IFN-γ with nivolumab to evaluate the primary endpoint of safety and determine the recommended phase two dose (RP2D). Most common adverse events are low grade and associated with IFN-γ. Three dose limiting toxicities are reported at the highest dose cohorts. We report only one patient with any immune related adverse event (irAE). No irAEs ≥ grade 3 are observed and no patients require corticosteroids. The maximum tolerated dose of IFN-γ is 75 mcg/m2, however based on a composite of safety, clinical, and correlative factors the RP2D is 50 mcg/m2. Exploratory analyses of efficacy in the phase I cohorts demonstrate one patient with a complete response, and five have achieved stable disease. Pre-planned correlative assessments of circulating immune cells demonstrate intermediate monocytes with increased PD-L1 expression correlating with IFN-γ dose and treatment duration. Interestingly, post-hoc analysis shows that IFN-γ induction increases circulating chemokines and is associated with an observed paucity of irAEs, warranting further evaluation. ClinicalTrials.gov Trial Registration: NCT02614456.


Assuntos
Neoplasias , Nivolumabe , Humanos , Nivolumabe/uso terapêutico , Interferon gama , Neoplasias/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
5.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745612

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), the fibroblastic stroma constitutes most of the tumor mass and is remarkably devoid of functional blood vessels. This raises an unresolved question of how PDAC cells obtain essential metabolites and water-insoluble lipids. We have found a critical role for cancer-associated fibroblasts (CAFs) in obtaining and transferring lipids from blood-borne particles to PDAC cells via trogocytosis of CAF plasma membranes. We have also determined that CAF-expressed phospholipid scramblase anoctamin 6 (ANO6) is an essential CAF trogocytosis regulator required to promote PDAC cell survival. During trogocytosis, cancer cells and CAFs form synapse-like plasma membranes contacts that induce cytosolic calcium influx in CAFs via Orai channels. This influx activates ANO6 and results in phosphatidylserine exposure on CAF plasma membrane initiating trogocytosis and transfer of membrane lipids, including cholesterol, to PDAC cells. Importantly, ANO6-dependent trogocytosis also supports the immunosuppressive function of pancreatic CAFs towards cytotoxic T cells by promoting transfer of excessive amounts of cholesterol. Further, blockade of ANO6 antagonizes tumor growth via disruption of delivery of exogenous cholesterol to cancer cells and reverses immune suppression suggesting a potential new strategy for PDAC therapy.

6.
J Biol Chem ; 285(1): 422-33, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19880521

RESUMO

Epigenetic silencing is mediated by families of factors that place, remove, read, and transmit repressive histone and DNA methylation marks on chromatin. How the roles for these functionally diverse factors are specified and integrated is the subject of intense study. To address these questions, HeLa cells harboring epigenetically silent green fluorescent protein reporter genes were interrogated with a small interference RNA library targeting 200 predicted epigenetic regulators, including potential activators, silencers, chromatin remodelers, and ancillary factors. Using this approach, individual, or combinatorial requirements for specific epigenetic silencing factors could be detected by measuring green fluorescent protein reactivation after small interference RNA-based factor knockdown. In our analyses, we identified a specific subset of 15 epigenetic factors that are candidates for participation in a functional epigenetic silencing network in human cells. These factors include histone deacetylase 1, de novo DNA methyltransferase 3A, components of the polycomb PRC1 complex (RING1 and HPH2), and the histone lysine methyltransferases KMT1E and KMT5C. Roles were also detected for two TRIM protein family members, the cohesin component Rad21, and the histone chaperone CHAF1A (CAF-1 p150). Remarkably, combinatorial knockdown of factors was not required for reactivation, indicating little functional redundancy. Consistent with this interpretation, knockdown of either KMT1E or CHAF1A resulted in a loss of multiple histone-repressive marks and concomitant gain of activation marks on the promoter during reactivation. These results reveal how functionally diverse factors may cooperate to maintain gene silencing during normal development or in disease. Furthermore, the findings suggest an avenue for discovery of new targets for epigenetic therapies.


Assuntos
Inativação Gênica , Proteínas Nucleares/metabolismo , Azacitidina/farmacologia , Separação Celular , Fator 1 de Modelagem da Cromatina/metabolismo , Células Clonais , Citomegalovirus/genética , DNA Metiltransferase 3A , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Histonas/metabolismo , Humanos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Fase S/efeitos dos fármacos , Fatores de Transcrição
7.
JCO Clin Cancer Inform ; 5: 125-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492994

RESUMO

PURPOSE: Performance status (PS) is a subjective assessment of patients' overall health. Quantification of physical activity using a wearable tracker (Fitbit Charge [FC]) may provide an objective measure of patient's overall PS and treatment tolerance. MATERIALS AND METHODS: Patients with colorectal cancer were prospectively enrolled into two cohorts (medical and surgical) and asked to wear FC for 4 days at baseline (start of new chemotherapy [± 4 weeks] or prior to curative resection) and follow-up (4 weeks [± 2 weeks] after initial assessment in medical and postoperative discharge in surgical cohort). Primary end point was feasibility, defined as 75% of patients wearing FC for at least 12 hours/d, 3 of 4 assigned days. Mean steps per day (SPD) were correlated with toxicities of interest (postoperative complication or ≥ grade 3 toxicity). A cutoff of 5,000 SPD was selected to compare outcomes. RESULTS: Eighty patients were accrued over 3 years with 55% males and a median age of 59.5 years. Feasibility end point was met with 68 patients (85%) wearing FC more than predefined duration and majority (91%) finding its use acceptable. The mean SPD count for patients with PS 0 was 6,313, and for those with PS 1, it was 2,925 (122 and 54 active minutes, respectively) (P = .0003). Occurrence of toxicity of interest was lower among patients with SPD > 5,000 (7 of 33, 21%) compared with those with SPD < 5,000 (14 of 43, 32%), although not significant (P = .31). CONCLUSION: Assessment of physical activity with FC is feasible in patients with colorectal cancer and well-accepted. SPD may serve as an adjunct to PS assessment and a possible tool to help predict toxicities, regardless of type of therapy. Future studies incorporating FC can standardize patient assessment and help identify vulnerable population.


Assuntos
Neoplasias Colorretais , Monitores de Aptidão Física , Neoplasias Colorretais/cirurgia , Exercício Físico , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias
8.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33320833

RESUMO

Management of gastrointestinal stromal tumors (GISTs) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and clinical application of RTK inhibitors in advanced disease. Stratification of GISTs into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in most GISTs, resistance remains a significant clinical problem. Development of effective treatment strategies for refractory GISTs requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has the potential to identify critical signaling networks and reveal protein kinases essential in GISTs. Using multiplexed inhibitor beads and mass spectrometry, we explored the majority of the kinome in GIST specimens from the 3 most common molecular subtypes (KIT mutant, PDGFRA mutant, and succinate dehydrogenase deficient) to identify kinase targets. Kinome profiling with loss-of-function assays identified an important role for G2/M tyrosine kinase, Wee1, in GIST cell survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in KIT mutant and PDGFRA mutant GIST cell lines as well as notable efficacy of MK-1775 as a monotherapy in the engineered PDGFRA mutant line. These studies provide strong preclinical justification for the use of MK-1775 in GIST.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/administração & dosagem , Pirimidinonas/administração & dosagem , Pirróis/administração & dosagem , Triazinas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Tumores do Estroma Gastrointestinal/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 12(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012873

RESUMO

Head and neck squamous cell carcinomas (HNSCC) affect more than 800,000 people annually worldwide, causing over 15,000 deaths in the US. Among HNSCC cancers, human papillomavirus (HPV)-negative HNSCC has the worst outcome, motivating efforts to improve therapy for this disease. The most common mutational events in HPV-negative HNSCC are inactivation of the tumor suppressors TP53 (>85%) and CDKN2A (>57%), which significantly impairs G1/S checkpoints, causing reliance on other cell cycle checkpoints to repair ongoing replication damage. We evaluated a panel of cell cycle-targeting clinical agents in a group of HNSCC cell lines to identify a subset of drugs with single-agent activity in reducing cell viability. Subsequent analyses demonstrated potent combination activity between the CHK1/2 inhibitor LY2606268 (prexasertib), which eliminates a G2 checkpoint, and the WEE1 inhibitor AZD1775 (adavosertib), which promotes M-phase entry, in induction of DNA damage, mitotic catastrophe, and apoptosis, and reduction of anchorage independent growth and clonogenic capacity. These phenotypes were accompanied by more significantly reduced activation of CHK1 and its paralog CHK2, and enhanced CDK1 activation, eliminating breaks on the mitotic entry of cells with DNA damage. These data suggest the potential value of dual inhibition of CHK1 and WEE1 in tumors with compromised G1/S checkpoints.

10.
Front Genet ; 10: 75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809247

RESUMO

The primary monocilium, or cilium, is a single antenna-like organelle that protrudes from the surface of most mammalian cell types, and serves as a signaling hub. Mutations of cilia-associated genes result in severe genetic disorders termed ciliopathies. Among these, the most common is autosomal dominant polycystic kidney disease (ADPKD); less common genetic diseases include Bardet-Biedl syndrome, Joubert syndrome, nephronophthisis, and others. Important signaling cascades with receptor systems localized exclusively or in part at cilia include Sonic Hedgehog (SHH), platelet derived growth factor alpha (PDGFRα), WNTs, polycystins, and others. Changes in ciliation during development or in pathological conditions such as cancer impacts signaling by these proteins. Notably, ciliation status of cells is coupled closely to the cell cycle, with cilia protruding in quiescent (G0) or early G1 cells, declining in S/G2, and absent in M phase, and has been proposed to contribute to cell cycle regulation. Because of this complex biology, the elaborate machinery regulating ciliary assembly and disassembly receives input from many cellular proteins relevant to cell cycle control, development, and oncogenic transformation, making study of genetic factors and drugs influencing ciliation of high interest. One of the most effective tools to investigate the dynamics of the cilia under different conditions is the imaging of live cells. However, developing assays to observe the primary cilium in real time can be challenging, and requires a consideration of multiple details related to the cilia biology. With the dual goals of identifying small molecules that may have beneficial activity through action on human diseases, and of identifying ciliary activities of existing agents that are in common use or development, we here describe creation and evaluation of three autofluorescent cell lines derived from the immortalized retinal pigmented epithelium parental cell line hTERT-RPE1. These cell lines stably express the ciliary-targeted fluorescent proteins L13-Arl13bGFP, pEGFP-mSmo, and tdTomato-MCHR1-N-10. We then describe methods for use of these cell lines in high throughput screening of libraries of small molecule compounds to identify positive and negative regulators of ciliary disassembly.

11.
Clin Cancer Res ; 25(13): 4179-4193, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867219

RESUMO

PURPOSE: For many tumors, signaling exchanges between cancer cells and other cells in their microenvironment influence overall tumor signaling. Some of these exchanges depend on expression of the primary cilium on nontransformed cell populations, as extracellular ligands including Sonic Hedgehog (SHH), PDGFRα, and others function through receptors spatially localized to cilia. Cell ciliation is regulated by proteins that are themselves therapeutic targets. We investigated whether kinase inhibitors of clinical interest influence ciliation and signaling by proteins with ciliary receptors in cancer and other cilia-relevant disorders, such as polycystic kidney disease (PKD). EXPERIMENTAL DESIGN: We screened a library of clinical and preclinical kinase inhibitors, identifying drugs that either prevented or induced ciliary disassembly. Specific bioactive protein targets of the drugs were identified by mRNA depletion. Mechanism of action was defined, and activity of select compounds investigated. RESULTS: We identified multiple kinase inhibitors not previously linked to control of ciliation, including sunitinib, erlotinib, and an inhibitor of the innate immune pathway kinase, IRAK4. For all compounds, activity was mediated through regulation of Aurora-A (AURKA) activity. Drugs targeting cilia influenced proximal cellular responses to SHH and PDGFRα. In vivo, sunitinib durably limited ciliation and cilia-related biological activities in renal cells, renal carcinoma cells, and PKD cysts. Extended analysis of IRAK4 defined a subset of innate immune signaling effectors potently affecting ciliation. CONCLUSIONS: These results suggest a paradigm by which targeted drugs may have unexpected off-target effects in heterogeneous cell populations in vivo via control of a physical platform for receipt of extracellular ligands.


Assuntos
Cílios/efeitos dos fármacos , Cílios/metabolismo , Descoberta de Drogas , Animais , Biomarcadores , Linhagem Celular , Suscetibilidade a Doenças , Cloridrato de Erlotinib/farmacologia , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas/etiologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Camundongos , Modelos Biológicos , Comunicação Parácrina/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Sunitinibe/farmacologia
12.
Sci Rep ; 9(1): 3632, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842471

RESUMO

After axonal insult and injury, Dual leucine-zipper kinase (DLK) conveys retrograde pro-degenerative signals to neuronal cell bodies via its downstream target c-Jun N-terminal kinase (JNK). We recently reported that such signals critically require modification of DLK by the fatty acid palmitate, via a process called palmitoylation. Compounds that inhibit DLK palmitoylation could thus reduce neurodegeneration, but identifying such inhibitors requires a suitable assay. Here we report that DLK subcellular localization in non-neuronal cells is highly palmitoylation-dependent and can thus serve as a proxy readout to identify inhibitors of DLK palmitoylation by High Content Screening (HCS). We optimized an HCS assay based on this readout, which showed highly robust performance in a 96-well format. Using this assay we screened a library of 1200 FDA-approved compounds and found that ketoconazole, the compound that most dramatically affected DLK localization in our primary screen, dose-dependently inhibited DLK palmitoylation in follow-up biochemical assays. Moreover, ketoconazole significantly blunted phosphorylation of c-Jun in primary sensory neurons subjected to trophic deprivation, a well known model of DLK-dependent pro-degenerative signaling. Our HCS platform is thus capable of identifying novel inhibitors of DLK palmitoylation and signalling that may have considerable therapeutic potential.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Cetoconazol/farmacologia , Lipoilação , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Técnicas de Química Combinatória , Inibidores do Citocromo P-450 CYP3A/farmacologia , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais
13.
Oncogene ; 38(19): 3710-3728, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674989

RESUMO

Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment. In addition to conventional therapy, melanoma treatment is currently based on targeting the BRAF/MEK/ERK signaling pathway and immune checkpoints. As drug resistance remains a major obstacle to treatment success, advanced therapeutic approaches based on novel targets are still urgently needed. We reasoned that the base excision repair enzyme thymine DNA glycosylase (TDG) could be such a target for its dual role in safeguarding the genome and the epigenome, by performing the last of the multiple steps in DNA demethylation. Here we show that TDG knockdown in melanoma cell lines causes cell cycle arrest, senescence, and death by mitotic alterations; alters the transcriptome and methylome; and impairs xenograft tumor formation. Importantly, untransformed melanocytes are minimally affected by TDG knockdown, and adult mice with conditional knockout of Tdg are viable. Candidate TDG inhibitors, identified through a high-throughput fluorescence-based screen, reduced viability and clonogenic capacity of melanoma cell lines and increased cellular levels of 5-carboxylcytosine, the last intermediate in DNA demethylation, indicating successful on-target activity. These findings suggest that TDG may provide critical functions specific to cancer cells that make it a highly suitable anti-melanoma drug target. By potentially disrupting both DNA repair and the epigenetic state, targeting TDG may represent a completely new approach to melanoma therapy.


Assuntos
Inibidores Enzimáticos/farmacologia , Melanoma/patologia , Timina DNA Glicosilase/genética , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Timina DNA Glicosilase/antagonistas & inibidores , Timina DNA Glicosilase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cell Biol ; 24(9): 3957-71, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15082789

RESUMO

In a cross-species overexpression approach, we used the pseudohyphal transition of Saccharomyces cerevisiae as a model screening system to identify human genes that regulate cell morphology and the cell cycle. Human enhancer of invasion-cluster (HEI-C), encoding a novel evolutionarily conserved coiled-coil protein, was isolated in a screen for human genes that induce agar invasion in S. cerevisiae. In human cells, HEI-C is primarily localized to the spindle during mitosis. Depletion of HEI-C in vivo with short interfering RNAs results in severe mitotic defects. Analysis by immunofluorescence, flow cytometry analysis, and videomicroscopy indicates that HEI-C-depleted cells form metaphase plates with normal timing after G(2)/M transition, although in many cases cells have disorganized mitotic spindles. Subsequently, severe defects occur at the metaphase-anaphase transition, characterized by a significant delay at this stage or, more commonly, cellular disintegration accompanied by the display of classic biochemical markers of apoptosis. These mitotic defects occur in spite of the fact that HEI-C-depleted cells retain functional cell cycle checkpoints, as these cells arrest normally following nocodazole or hydroxyurea treatment. These results place HEI-C as a novel regulator of spindle function and integrity during the metaphase-anaphase transition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Conformação Proteica , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Apoptose/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Tamanho Celular , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Nocodazol/metabolismo , RNA Interferente Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fuso Acromático/metabolismo
15.
Cancer Res ; 77(24): 6902-6913, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061672

RESUMO

CDK4/6 targeting is a promising therapeutic strategy under development for various tumor types. In this study, we used computational methods and The Cancer Genome Atlas dataset analysis to identify novel miRNAs that target CDK4/6 and exhibit potential for therapeutic development in colorectal cancer. The 3'UTR of CDK4/6 mRNAs are targeted by a family of miRNAs, which includes miR-6883-5p, miR-149*, miR-6785-5p, and miR-4728-5p. Ectopic expression of miR-6883-5p or miR-149* downregulated CDK4 and CDK6 levels in human colorectal cancer cells. RNA-seq analysis revealed an inverse relationship between the expression of CDK4/6 and miR-149* and intronic miRNA-6883-5p encoding the clock gene PER1 in colorectal cancer patient samples. Restoring expression of miR-6883-5p and miR-149* blocked cell growth leading to G0-G1 phase cell-cycle arrest and apoptosis in colorectal cancer cells. CDK4/6 targeting by miR-6883-5p and miR-149* could only partially explain the observed antiproliferative effects. Notably, both miRNAs synergized with the frontline colorectal cancer chemotherapy drug irinotecan. Further, they resensitized mutant p53-expressing cell lines resistant to 5-fluorouracil. Taken together, our results established the foundations of a candidate miRNA-based theranostic strategy to improve colorectal cancer management. Cancer Res; 77(24); 6902-13. ©2017 AACR.


Assuntos
Neoplasias do Colo/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , MicroRNAs/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Família Multigênica/fisiologia
16.
Oncotarget ; 8(12): 19156-19171, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27863405

RESUMO

Ovarian, head and neck, and other cancers are commonly treated with cisplatin and other DNA damaging cytotoxic agents. Altered DNA damage response (DDR) contributes to resistance of these tumors to chemotherapies, some targeted therapies, and radiation. DDR involves multiple protein complexes and signaling pathways, some of which are evolutionarily ancient and involve protein orthologs conserved from yeast to humans. To identify new regulators of cisplatin-resistance in human tumors, we integrated high throughput and curated datasets describing yeast genes that regulate sensitivity to cisplatin and/or ionizing radiation. Next, we clustered highly validated genes based on chemogenomic profiling, and then mapped orthologs of these genes in expanded genomic networks for multiple metazoans, including humans. This approach identified an enriched candidate set of genes involved in the regulation of resistance to radiation and/or cisplatin in humans. Direct functional assessment of selected candidate genes using RNA interference confirmed their activity in influencing cisplatin resistance, degree of γH2AX focus formation and ATR phosphorylation, in ovarian and head and neck cancer cell lines, suggesting impaired DDR signaling as the driving mechanism. This work enlarges the set of genes that may contribute to chemotherapy resistance and provides a new contextual resource for interpreting next generation sequencing (NGS) genomic profiling of tumors.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Análise por Conglomerados , Dano ao DNA/genética , Imunofluorescência , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transcriptoma
18.
Cell Rep ; 16(3): 657-71, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27396341

RESUMO

Anti-Müllerian hormone (AMH) and its type II receptor AMHR2, both previously thought to primarily function in gonadal tissue, were unexpectedly identified as potent regulators of transforming growth factor (TGF-ß)/bone morphogenetic protein (BMP) signaling and epithelial-mesenchymal transition (EMT) in lung cancer. AMH is a TGF-ß/BMP superfamily member, and AMHR2 heterodimerizes with type I receptors (ALK2, ALK3) also used by the type II receptor for BMP (BMPR2). AMH signaling regulates expression of BMPR2, ALK2, and ALK3, supports protein kinase B-nuclear factor κB (AKT-NF-κB) and SMAD survival signaling, and influences BMP-dependent signaling in non-small cell lung cancer (NSCLC). AMH and AMHR2 are selectively expressed in epithelial versus mesenchymal cells, and loss of AMH/AMHR2 induces EMT. Independent induction of EMT reduces expression of AMH and AMHR2. Importantly, EMT associated with depletion of AMH or AMHR2 results in chemoresistance but sensitizes cells to the heat shock protein 90 (HSP90) inhibitor ganetespib. Recognition of this AMH/AMHR2 axis helps to further elucidate TGF-ß/BMP resistance-associated signaling and suggests new strategies for therapeutic targeting of EMT.


Assuntos
Hormônio Antimülleriano/metabolismo , Plasticidade Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos SCID , NF-kappa B/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
19.
Epigenetics ; 9(9): 1280-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25147916

RESUMO

Cellular identity in both normal and disease processes is determined by programmed epigenetic activation or silencing of specific gene subsets. Here, we have used human cells harboring epigenetically silent GFP-reporter genes to perform a genome-wide siRNA knockdown screen for the identification of cellular factors that are required to maintain epigenetic gene silencing. This unbiased screen interrogated 21,121 genes, and we identified and validated a set of 128 protein factors. This set showed enrichment for functional categories, and protein-protein interactions. Among this set were known epigenetic silencing factors, factors with no previously identified role in epigenetic gene silencing, as well as unstudied factors. The set included non-nuclear factors, for example, components of the integrin-adhesome. A key finding was that the E1 and E2 enzymes of the small ubiquitin-like modifier (SUMO) pathway (SAE1, SAE2/UBA2, UBC9/UBE2I) are essential for maintenance of epigenetic silencing. This work provides the first genome-wide functional view of human factors that mediate epigenetic gene silencing. The screen output identifies novel epigenetic factors, networks, and mechanisms, and provides a set of candidate targets for epigenetic therapy and cellular reprogramming.


Assuntos
Epigênese Genética , Inativação Gênica , Proteínas/metabolismo , Transdução de Sinais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas/genética , RNA Interferente Pequeno/genética , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo
20.
Head Neck ; 36(8): 1113-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23804308

RESUMO

BACKGROUND: Psychosocial functioning is associated with vascular endothelial growth factor (VEGF) in various patient populations. This study examined whether psychosocial functioning in patients with head and neck squamous cell carcinoma (HNSCC) is associated with tumor VEGF expression, a protein that stimulates angiogenesis and is associated with poor prognosis. METHODS: Forty-two newly diagnosed patients completed assessments of psychosocial functioning (ie, depressive symptoms, perceived stress, anxiety, social support) before surgery. Tumor samples were obtained for VEGF analysis and human papillomavirus (HPV)-typing. RESULTS: Poorer psychosocial functioning was associated with greater VEGF expression controlling for disease stage (odds ratio [OR], 4.55; 95% confidence interval [CI], 1.72-12.0; p < .01). When examined by HPV status, the association between psychosocial functioning and VEGF remained significant among patients who were HPV negative (OR, 5.50; 95% CI, 1.68-17.3; p < .01), but not among patients who were HPV positive. CONCLUSION: These findings inform our understanding of the biobehavioral pathways that may contribute to poor outcomes in non-HPV-associated HNSCCs.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Estresse Psicológico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Transtornos de Ansiedade/metabolismo , Transtorno Depressivo/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA