Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(9): 6688-6697, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28210718

RESUMO

A hydrophilic tris(tetrachlorotriaryl)methyl (tetrachloro-TAM) radical labelled 50% with 13C at the central carbon atom was prepared. The mixture of isotopologue radicals was characterised by continuous wave and pulsed X-band electron paramagnetic spectroscopy (EPS). For the pharmaceutical and medical applications planned, the quantitative influence of oxygen, viscosity, temperature and pH on EPR line widths was studied in aqueous buffer, DMSO, water-methanol and water-glycerol mixtures. Under in vivo conditions, pH can be disregarded. There is a clear oxygen dependence of the width of the 12C isotopologue single EPR line in aqueous solutions while changes in rotational motion (viscosity) are observable only in the doublet lines of the central carbon of the 13C isotopologue. The tetrachloro-TAM proved to be very stable as a solid. Its thermal decay was determined quantitatively by thermal annealing. Towards ascorbic acid as a reducing agent and towards an oocyte cell extract it had a half-life of approx. 60 and 10 min. Thus for in vivo applications, 50% 13C tetrachloro-TAMs are suitable for selective and simultaneous oxygen and macroviscosity measurements in a formulation, e.g. nanocapsules.

2.
J Org Chem ; 80(13): 6754-66, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26020133

RESUMO

Tissue oxygenation plays an important role in the pathophysiology of various diseases and is often a marker of prognosis and therapeutic response. EPR (ESR) is a suitable noninvasive oximetry technique. However, to reliably deploy soluble EPR probes as oxygen sensors in complex biological systems, there is still a need to investigate and improve their specificity, sensitivity, and stability. We reproducibly synthesized various derivatives of tetrathiatriarylmethyl and tetrachlorotriarylmethyl (trityl) radicals. Hydrophilic radicals were investigated in aqueous solution mimicking physiological conditions by, e.g., variation of viscosity and ionic strength. Their specificity was satisfactory, but the oxygen sensitivity was low. To enhance the capability of trityl radicals as oxygen sensors, encapsulation into oily core nanocapsules was performed. Thus, different lipophilic triesters were prepared and characterized in oily solution employing oils typically used in drug formulations, i.e., middle-chain triglycerides and isopropyl myristate. Our screening identified the deuterated ethyl ester of D-TAM (radical 13) to be suitable. It had an extremely narrow single EPR line under anoxic conditions and excellent oxygen sensitivity. After encapsulation, it retained its oxygen responsiveness and was protected against reduction by ascorbic acid. These biocompatible and highly sensitive nanosensors offer great potential for future EPR oximetry applications in preclinical research.


Assuntos
Radicais Livres/química , Oxigênio/química , Compostos de Tritil/síntese química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Oximetria , Compostos de Tritil/química
3.
Bioorg Chem ; 60: 1-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25899678

RESUMO

In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a novel series of tricyclic pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine derivatives were designed and synthesized. These compounds were characterized by IR, (1)H NMR, (13)C NMR, elemental and mass spectral analyses. Docking studies have given a partial insight into the molecular determinants of the activity of this novel series in VEGFR-2 kinase active site. Moreover, these compounds were assessed at 10µM for their selective inhibitory activities over a panel of 6 human kinases, namely VEGFR-1/Flt-1, VEGFR-2/KDR, EGFR, CDK5/p25, GSK3α and GSK3ß. Compound N-(4,6-dimethylthieno[2,3-b]pyridine)-7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine (9d) exhibited the most potent and selective inhibitory activity against VEGFR-2/KDR over the six human kinases, with an IC50 value 2.6µM. The identification of this hit candidate could aid the design of new tricyclic-based VEGFR-2 kinase modulators.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Aminação , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA