Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2109617119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35353605

RESUMO

α-Synuclein (α-syn) phosphorylation at serine 129 (pS129­α-syn) is substantially increased in Lewy body disease, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129­α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129­α-syn inhibits α-syn fibril formation and seeded aggregation. We also identified lower seeding propensity of pS129­α-syn in cultured cells and correspondingly attenuated cellular toxicity. To build upon these findings, we developed a monoclonal antibody (4B1) specifically recognizing nonphosphorylated S129­α-syn (WT­α-syn) and noted that S129 residue is more efficiently phosphorylated when the protein is aggregated. Using this antibody, we characterized the time-course of α-syn phosphorylation in organotypic mouse hippocampal cultures and mice injected with α-syn preformed fibrils, and we observed aggregation of nonphosphorylated α-syn followed by later pS129­α-syn. Furthermore, in postmortem brain tissue from PD and DLB patients, we observed an inverse relationship between relative abundance of nonphosphorylated α-syn and disease duration. These findings suggest that pS129­α-syn occurs subsequent to initial protein aggregation and apparently inhibits further aggregation. This could possibly imply a potential protective role for pS129­α-syn, which has major implications for understanding the pathobiology of Lewy body disease and the continued use of reduced pS129­α-syn as a measure of efficacy in clinical trials.


Assuntos
Amiloide , Doença por Corpos de Lewy , Doença de Parkinson , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Serina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396924

RESUMO

Diabetes is recognized as a risk factor for cognitive decline, but the underlying mechanisms remain elusive. We aimed to identify the metabolic pathways altered in diabetes-associated cognitive decline (DACD) using untargeted metabolomics. We conducted liquid chromatography-mass spectrometry-based untargeted metabolomics to profile serum metabolite levels in 100 patients with type 2 diabetes (T2D) (54 without and 46 with DACD). Multivariate statistical tools were used to identify the differentially expressed metabolites (DEMs), and enrichment and pathways analyses were used to identify the signaling pathways associated with the DEMs. The receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of a set of metabolites. We identified twenty DEMs, seven up- and thirteen downregulated in the DACD vs. DM group. Chemometric analysis revealed distinct clustering between the two groups. Metabolite set enrichment analysis found significant enrichment in various metabolite sets, including galactose metabolism, arginine and unsaturated fatty acid biosynthesis, citrate cycle, fructose and mannose, alanine, aspartate, and glutamate metabolism. Pathway analysis identified six significantly altered pathways, including arginine and unsaturated fatty acid biosynthesis, and the metabolism of the citrate cycle, alanine, aspartate, glutamate, a-linolenic acid, and glycerophospholipids. Classifier models with AUC-ROC > 90% were developed using individual metabolites or a combination of individual metabolites and metabolite ratios. Our study provides evidence of perturbations in multiple metabolic pathways in patients with DACD. The distinct DEMs identified in this study hold promise as diagnostic biomarkers for DACD patients.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estudos Transversais , Metaboloma , Ácido Aspártico/metabolismo , Metabolômica , Alanina/metabolismo , Arginina/metabolismo , Citratos , Glutamatos/metabolismo , Ácidos Graxos Insaturados
3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108604

RESUMO

Autism spectrum disorder (ASD) is an umbrella term that encompasses several disabling neurodevelopmental conditions. These conditions are characterized by impaired manifestation in social and communication skills with repetitive and restrictive behaviors or interests. Thus far, there are no approved biomarkers for ASD screening and diagnosis; also, the current diagnosis depends heavily on a physician's assessment and family's awareness of ASD symptoms. Identifying blood proteomic biomarkers and performing deep blood proteome profiling could highlight common underlying dysfunctions between cases of ASD, given its heterogeneous nature, thus laying the foundation for large-scale blood-based biomarker discovery studies. This study measured the expression of 1196 serum proteins using proximity extension assay (PEA) technology. The screened serum samples included ASD cases (n = 91) and healthy controls (n = 30) between 6 and 15 years of age. Our findings revealed 251 differentially expressed proteins between ASD and healthy controls, of which 237 proteins were significantly upregulated and 14 proteins were significantly downregulated. Machine learning analysis identified 15 proteins that could be biomarkers for ASD with an area under the curve (AUC) = 0.876 using support vector machine (SVM). Gene Ontology (GO) analysis of the top differentially expressed proteins (TopDE) and weighted gene co-expression analysis (WGCNA) revealed dysregulation of SNARE vesicular transport and ErbB pathways in ASD cases. Furthermore, correlation analysis showed that proteins from those pathways correlate with ASD severity. Further validation and verification of the identified biomarkers and pathways are warranted.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/genética , Projetos Piloto , Proteômica , Biomarcadores/metabolismo , Proteoma/metabolismo
4.
Int J Mol Sci ; 24(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175824

RESUMO

Dementia is a progressive and debilitating neurological disease that affects millions of people worldwide. Identifying the minimally invasive biomarkers associated with dementia that could provide insights into the disease pathogenesis, improve early diagnosis, and facilitate the development of effective treatments is pressing. Proteomic studies have emerged as a promising approach for identifying the protein biomarkers associated with dementia. This pilot study aimed to investigate the plasma proteome profile and identify a panel of various protein biomarkers for dementia. We used a high-throughput proximity extension immunoassay to quantify 1090 proteins in 122 participants (22 with dementia, 64 with mild cognitive impairment (MCI), and 36 controls with normal cognitive function). Limma-based differential expression analysis reported the dysregulation of 61 proteins in the plasma of those with dementia compared with controls, and machine learning algorithms identified 17 stable diagnostic biomarkers that differentiated individuals with AUC = 0.98 ± 0.02. There was also the dysregulation of 153 plasma proteins in individuals with dementia compared with those with MCI, and machine learning algorithms identified 8 biomarkers that classified dementia from MCI with an AUC of 0.87 ± 0.07. Moreover, multiple proteins selected in both diagnostic panels such as NEFL, IL17D, WNT9A, and PGF were negatively correlated with cognitive performance, with a correlation coefficient (r2) ≤ -0.47. Gene Ontology (GO) and pathway analysis of dementia-associated proteins implicated immune response, vascular injury, and extracellular matrix organization pathways in dementia pathogenesis. In conclusion, the combination of high-throughput proteomics and machine learning enabled us to identify a blood-based protein signature capable of potentially differentiating dementia from MCI and cognitively normal controls. Further research is required to validate these biomarkers and investigate the potential underlying mechanisms for the development of dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteômica , Projetos Piloto , Biomarcadores
5.
Brain ; 143(1): 249-265, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816026

RESUMO

Parkinson's disease is one of the most common movement disorders and is characterized by dopaminergic cell loss and the accumulation of pathological α-synuclein, but its precise pathogenetic mechanisms remain elusive. To develop disease-modifying therapies for Parkinson's disease, an animal model that recapitulates the pathology and symptoms of the disease, especially in the prodromal stage, is indispensable. As subjects with α-synuclein gene (SNCA) multiplication as well as point mutations develop familial Parkinson's disease and a genome-wide association study in Parkinson's disease has identified SNCA as a risk gene for Parkinson's disease, the increased expression of α-synuclein is closely associated with the aetiology of Parkinson's disease. In this study we generated bacterial artificial chromosome transgenic mice harbouring SNCA and its gene expression regulatory regions in order to maintain the native expression pattern of α-synuclein. Furthermore, to enhance the pathological properties of α-synuclein, we inserted into SNCA an A53T mutation, two single-nucleotide polymorphisms identified in a genome-wide association study in Parkinson's disease and a Rep1 polymorphism, all of which are causal of familial Parkinson's disease or increase the risk of sporadic Parkinson's disease. These A53T SNCA bacterial artificial chromosome transgenic mice showed an expression pattern of human α-synuclein very similar to that of endogenous mouse α-synuclein. They expressed truncated, oligomeric and proteinase K-resistant phosphorylated forms of α-synuclein in the regions that are specifically affected in Parkinson's disease and/or dementia with Lewy bodies, including the olfactory bulb, cerebral cortex, striatum and substantia nigra. Surprisingly, these mice exhibited rapid eye movement (REM) sleep without atonia, which is a key feature of REM sleep behaviour disorder, at as early as 5 months of age. Consistent with this observation, the REM sleep-regulating neuronal populations in the lower brainstem, including the sublaterodorsal tegmental nucleus, nuclei in the ventromedial medullary reticular formation and the pedunculopontine nuclei, expressed phosphorylated α-synuclein. In addition, they also showed hyposmia at 9 months of age, which is consistent with the significant accumulation of phosphorylated α-synuclein in the olfactory bulb. The dopaminergic neurons in the substantia nigra pars compacta degenerated, and their number was decreased in an age-dependent manner by up to 17.1% at 18 months of age compared to wild-type, although the mice did not show any related locomotor dysfunction. In conclusion, we created a novel mouse model of prodromal Parkinson's disease that showed RBD-like behaviour and hyposmia without motor symptoms.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Transtornos do Olfato/genética , Doença de Parkinson/genética , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/genética , alfa-Sinucleína/genética , Animais , Contagem de Células , Cromossomos Artificiais Bacterianos , Eletroencefalografia , Eletromiografia , Endopeptidase K/metabolismo , Camundongos Transgênicos , Transtornos do Olfato/fisiopatologia , Doença de Parkinson/fisiopatologia , Polimorfismo de Nucleotídeo Único , Transtorno do Comportamento do Sono REM/fisiopatologia , Sono , alfa-Sinucleína/metabolismo
6.
Brain ; 143(5): 1462-1475, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32380543

RESUMO

In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model. This finding suggests that the progression of α-synuclein pathology might be either caudo-rostral or rostro-caudal, varying between patients and disease subtypes. In addition, we report that α-synuclein pathological lesions were not found in the vagal nerve in our experimental setting. This study does not support the hypothesis of a transmission of α-synuclein pathology through the vagus nerve and the dorsal motor nucleus of the vagus. Instead, our results suggest a possible systemic mechanism in which the general circulation would act as a route for long-distance bidirectional transmission of endogenous α-synuclein between the enteric and the central nervous systems. Taken together, our study provides invaluable primate data exploring the role of the gut-brain axis in the initiation and propagation of Parkinson's disease pathology and should open the door to the development and testing of new therapeutic approaches aimed at interfering with the development of sporadic Parkinson's disease.


Assuntos
Encéfalo/patologia , Neuroimunomodulação/fisiologia , Doença de Parkinson/fisiopatologia , Nervo Vago/patologia , alfa-Sinucleína/toxicidade , Idoso , Animais , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Feminino , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Masculino , Papio , alfa-Sinucleína/administração & dosagem
7.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205249

RESUMO

The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.


Assuntos
Alcaloides/farmacologia , Produtos Biológicos/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Amiloide/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/metabolismo , Medicina Tradicional Chinesa/métodos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
8.
J Neurochem ; 150(5): 612-625, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31055836

RESUMO

Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".


Assuntos
Anticorpos/imunologia , Sinucleinopatias/terapia , alfa-Sinucleína/imunologia , Anticorpos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos , Biomarcadores , Diagnóstico Tardio , Epitopos/imunologia , Humanos , Fragmentos de Imunoglobulinas/imunologia , Testes Imunológicos/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/prevenção & controle , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/imunologia , Sinucleinopatias/diagnóstico , Sinucleinopatias/imunologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/química
9.
J Neurochem ; 150(5): 626-636, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265130

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease and is estimated to affect approximately 1-4% of individuals aged over 60 years old. Although considerable efforts have been invested into developing disease-modifying therapies for Parkinson's disease, such efforts have been confounded by the difficulty in accurately diagnosing Parkinson's disease during life to enable accurate patient stratification for clinical trialling of candidate therapeutics. Therefore, the search for effective biomarkers that can be accurately evaluated during life with non-invasive means is a pressing issue in the field. Since the discovery of α-synuclein (α-syn) as a protein linked to a familial form of Parkinson's disease, later identified as the major protein component of the neuropathological hallmark of idiopathic Parkinson's disease, considerable interest has focused on this protein and its distinct conformers. We describe here the progress that has been made in the area of Parkinson's disease biomarker discovery with a focus on α-synuclein. In particular, we highlight the novel assays that have been employed and the increasing complexity in evaluating α-synuclein with regard to the considerable diversity of conformers that exist in the biofluids and peripheral tissues under disease conditions. "This article is part of the Special Issue Synuclein."


Assuntos
Doença de Parkinson/diagnóstico , alfa-Sinucleína/análise , Biomarcadores , Western Blotting , Líquidos Corporais/química , Encéfalo/diagnóstico por imagem , Estudos Transversais , Progressão da Doença , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Gônadas/química , Humanos , Estudos Longitudinais , Espectrometria de Massas , Mucosa/química , Especificidade de Órgãos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Fosforilação , Tomografia por Emissão de Pósitrons , Agregados Proteicos , Processamento de Proteína Pós-Traducional , Glândulas Salivares/química , Pele/química , alfa-Sinucleína/química
10.
Neurobiol Dis ; 127: 163-177, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849508

RESUMO

Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.


Assuntos
Doença por Corpos de Lewy/terapia , Degeneração Neural/terapia , alfa-Sinucleína/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Vetores Genéticos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/administração & dosagem , Receptores de LDL/genética , Receptores de LDL/metabolismo , alfa-Sinucleína/genética
12.
Neurobiol Dis ; 130: 104525, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276792

RESUMO

Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16 µg of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2 months and bilateral loss of nigral dopamine neurons at 6 months. Unilateral 16 µg PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6 months. Bilateral injection of 16 µg α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16 µg PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.


Assuntos
Corpo Estriado/metabolismo , Substância Negra/metabolismo , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Ratos , Ratos Endogâmicos F344 , Substância Negra/patologia , Sinucleinopatias/patologia
13.
BMC Neurol ; 19(1): 113, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164098

RESUMO

BACKGROUND AND AIM: Toxic oligomeric α-synuclein (αS; O-αS) has been suggested to play a central role in the pathogenesis of Lewy body diseases such as Parkinson's disease (PD). Cerebrospinal fluid (CSF) levels of αS, O-αS, total and phosphorylated tau, and amyloid ß 1-42 (Aß1-42) are thought to reflect the pathophysiology or clinical symptoms in PD. In this study, we examined correlations of the CSF levels of these proteins with the clinical symptoms, and with each other in drug-naïve patients with PD. METHODS: Twenty-seven drug-naïve patients with PD were included. Motor and cognitive functions were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS), Montreal Cognitive Assessment (MoCA), and Neurobehavioral Cognitive Status Examination (COGNISTAT). CSF levels of total αS, O-αS, Aß1-42, total tau and tau phosphorylated at threonine 181 (P-tau181p) were measured. CSF levels of these proteins were compared with clinical assessments from the UPDRS, MoCA and COGNISTAT using Spearman correlation analysis. Spearman correlation coefficients among CSF protein levels were also evaluated. RESULTS: CSF levels of αS were negatively correlated with UPDRS part III (motor score) (p < 0.05) and bradykinesia (p < 0.01), and positively correlated with COGNISTAT subtest of judgement (p < 0.01) and CSF levels of Aß1-42 (p < 0.001), total tau (p < 0.001) and P-tau181p (p < 0.01). Lower CSF levels of Aß1-42, total tau and P-tau181p were significantly related to worsening of some motor and/or cognitive functions. The CSF level of O-αS showed no correlation with any motor and cognitive assessments or with CSF levels of the other proteins. CONCLUSION: CSF levels of αS are correlated with some clinical symptoms and CSF levels of other pathogenic proteins in drug-naïve PD patients. These correlations suggest a central role for interaction and aggregation of αS with Aß1-42, tau, and phosphorylated tau in the pathogenesis of PD. Although O-αS has been shown to have neurotoxic effects, CSF levels do not reflect clinical symptoms or levels of other proteins in cross-sectional assessment.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia
14.
J Neuroinflammation ; 15(1): 129, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29716614

RESUMO

BACKGROUND: Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS: Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS: Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS: Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.


Assuntos
Corpos de Lewy/patologia , Microglia/patologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Substância Negra/patologia , alfa-Sinucleína/toxicidade , Animais , Injeções Intraventriculares , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/metabolismo , Ratos , Ratos Endogâmicos F344 , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , alfa-Sinucleína/administração & dosagem
15.
J Neuroinflammation ; 15(1): 169, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843738

RESUMO

After publication of the original article [1] it was noted that the name of author, D. Luke Fisher, was erroneously typeset in both the PDF and online formats of the manuscript as Luke D. Fisher.

16.
Mov Disord ; 33(11): 1724-1733, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30440090

RESUMO

BACKGROUND: The objective of this study was to investigate the discriminating value of a range of CSF α-synuclein species for dementia with Lewy bodies compared with Alzheimer's disease, PD, and cognitively normal controls. METHODS: We applied our recently published enzyme-linked immunosorbent assays to measure the CSF levels of total α-synuclein, oligomeric α-synuclein, and phosphorylated α-synuclein in dementia with Lewy bodies (n = 42), Alzheimer's disease (n = 39), PD (n = 46), and controls (n = 78). General linear models corrected for age and sex were performed to assess differences in α-synuclein levels between groups. We used backward-elimination logistic regression analysis to investigate the combined discriminating value of the different CSF α-synuclein species and Alzheimer's disease biomarkers. RESULTS: CSF levels of total α-synuclein were lower in dementia with Lewy bodies and PD compared with Alzheimer's disease as well as controls (P < 0.001). In contrast, CSF levels of oligomeric α-synuclein were higher in dementia with Lewy bodies and PD compared with Alzheimer's disease (P < 0.05) and controls (P < 0.001). No group differences were found for phosphorylated α-synuclein. In dementia with Lewy bodies and PD, CSF total α-synuclein levels positively correlated with tau and phosphorylated tau (both r > 0.40, P < 0.01), but not with amyloid-ß1-42 . The optimal combination to differentiate dementia with Lewy bodies from controls consisted of amyloid-ß1-42 , tau, total α-synuclein, oligomeric α-synuclein, age, and sex (AUC, 0.90). To differentiate dementia with Lewy bodies from Alzheimer's disease, the combination of tau and oligomeric α-synuclein resulted in an AUC of 0.83. CSF α-synuclein species do not contribute to the differentiation of dementia with Lewy bodies from PD. CONCLUSIONS: CSF α-synuclein species could be useful as part of a biomarker panel for dementia with Lewy bodies. Evaluating both oligomeric α-synuclein and total α-synuclein in CSF helps in the diagnosis of dementia with Lewy bodies. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Doença por Corpos de Lewy/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Eletroencefalografia , Feminino , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/diagnóstico por imagem , Fragmentos de Peptídeos/líquido cefalorraquidiano , Escalas de Graduação Psiquiátrica , Estudos Retrospectivos , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos/farmacocinética , Proteínas tau/líquido cefalorraquidiano
17.
Brain ; 139(Pt 3): 856-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26719384

RESUMO

Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing oligomeric, fibrillar and/or total (monomeric and aggregated) α-synuclein. Following viral vector transduction, monomeric, oligomeric and fibrillar protein was detected within donor neurons in the medulla oblongata. In contrast, recipient axons in the pons were devoid of immunoreactivity for fibrillar α-synuclein, indicating that non-fibrillar forms of α-synuclein were primarily transferred from one neuron to the other, diffused within the brain and led to initial neuronal injury. This study elucidates a paradigm of α-synuclein propagation that may play a particularly important role under pathophysiological conditions associated with enhanced α-synuclein expression. Rapid long-distance diffusion and accumulation of monomeric and oligomeric α-synuclein does not necessarily involve pathological seeding but could still result in a significant neuronal burden during the pathogenesis of neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , alfa-Sinucleína/biossíntese , Animais , Encéfalo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , alfa-Sinucleína/deficiência , alfa-Sinucleína/genética
18.
Mov Disord ; 31(6): 782-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26946341

RESUMO

Glycation is a spontaneous age-dependent posttranslational modification that can impact the structure and function of several proteins. Interestingly, glycation can be detected at the periphery of Lewy bodies in the brain in Parkinson's disease. Moreover, α-synuclein can be glycated, at least under experimental conditions. In Alzheimer's disease, glycation of amyloid ß peptide exacerbates its toxicity and contributes to neurodegeneration. Recent studies establish diabetes mellitus as a risk factor for several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, the mechanisms underlying this connection remain unclear. We hypothesize that hyperglycemia might play an important role in the development of these disorders, possibly by also inducing protein glycation and thereby dysfunction, aggregation, and deposition. Here, we explore protein glycation as a common player in Parkinson's and Alzheimer's diseases and propose it may constitute a novel target for the development of strategies for neuroprotective therapeutic interventions. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Humanos
19.
Mov Disord ; 31(10): 1535-1542, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548849

RESUMO

BACKGROUND: Parkinson's disease (PD) diagnosis is mainly based on clinical criteria, with a high risk of misdiagnosis. The identification of reliable biomarkers for disease diagnosis and progression has a key role for developing disease-modifying therapies. In this article, we investigated the longitudinal changes of CSF α-synuclein species in early PD patients and explored the potential use of these species as surrogate biomarkers for PD progression. METHODS: We used our newly developed enzyme-linked immunosorbent assay systems for measuring different forms of α-synuclein, such as oligomeric-α-synuclein, phosphorylated-α-synuclein at serine 129, or total-α-synuclein in CSF from the longitudinal Deprenyl and Tocopherol Antioxidative Therapy for Parkinsonism study cohort (n = 121). CSF Alzheimer's disease biomarkers (total-tau, phosphorylated-tau, Aß40 , and Aß42 ) were also measured for this cohort. RESULTS: Interestingly, total-α-synuclein and oligomeric-α-synuclein levels significantly increased during the 2-year Deprenyl and Tocopherol Antioxidative Therapy for Parkinsonism study follow-up period, whereas phosphorylated-α-synuclein at serine 129 levels showed a longitudinal decrease. We have also noted an association between a change of the oligomeric-α-synuclein/total-α-synuclein ratio and a worsening of motor signs, in particular in the postural-instability and gait-difficulty dominant PD group. A strong positive correlation between the changes in CSF total-α-synuclein and oligomeric-α-synuclein during the 2-year Deprenyl and Tocopherol Antioxidative Therapy for Parkinsonism study was also noted (r = 0.84, P < .001). CONCLUSION: Our data show that CSF α-synuclein species have a dynamic pattern along the course of the disease, supporting their possible role as progression biomarkers for PD and their link with PD clinical phenotypes. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Progressão da Doença , Doença de Parkinson/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Idoso , Antioxidantes/uso terapêutico , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico
20.
Neurobiol Dis ; 78: 100-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818009

RESUMO

Phosphorylation of the α-synuclein (α-syn) protein at Ser129 [P(S129)-α-syn] was found to be the most abundant form in intracellular inclusions in brains from Parkinson's disease (PD) patients. This finding suggests that P(S129)-α-syn plays a central role in the pathogenesis of PD. However, it is at present unclear whether P(S129)-α-syn is pathogenic driving the neurodegenerative process. Rodent studies using neither the phosphomimics of human α-syn nor co-expression of human wild-type α-syn and kinases phosphorylating α-syn at Ser129 gave consistent results. One major concern in interpreting these findings is that human α-syn was expressed above physiological levels inducing neurodegeneration in rat nigral neurons. In order to exclude this confounding factor, we took a different approach and increased the phosphorylation level of endogenous α-syn. For this purpose, we took advantage of recombinant adeno-associated viral (rAAV) vectors to deliver polo-like kinase (PLK) 2 or PLK3 in the substantia nigra and investigated whether increased levels of P(S129)-α-syn compromised the function and survival of nigral dopaminergic neurons. Interestingly, we observed that hyperphosphorylated α-syn did not induce nigral dopaminergic cell death, as assessed at 1 and 4months. Furthermore, histological analysis did not show any accumulation of α-syn protein or formation of inclusions. Using in vivo microdialysis, we found that the only measurable functional alteration was the depolarisation-induced release of dopamine, while the in vivo synthesis rate of DOPA and dopamine baseline release remained unaltered. Taken together, our results suggest that phosphorylation of α-syn at Ser129 does not confer a toxic gain of function per se.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Sobrevivência Celular , Dependovirus , Dopamina/metabolismo , Feminino , Vetores Genéticos/efeitos adversos , Fosforilação , Ratos , Ratos Sprague-Dawley , Serina/metabolismo , Substância Negra/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA