RESUMO
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important pest of citrus. In addition, D. citri is the vector of Huanglongbing, a destructive disease in citrus, also known as citrus greening disease caused by Candidatus Liberibacter asiaticus. Huanglongbing causes huge losses for citrus industries. Insecticide application for D. citri is the major strategy to prevent disease spread. The heavy use of insecticides causes development of insecticide resistance. We used RNA interference (RNAi) to silence genes implicated in pesticide resistance in order to increase the susceptibility. The activity of dsRNA to reduce the expression of carboxyesterases including esterases FE4 (EstFE4) and acetylcholinesterases (AChe) in D. citri was investigated. The dsRNA was applied topically to the fourth and fifth instars of nymphs. We targeted several EstFE4 and AChe genes using dsRNA against a consensus sequence for each of them. Five concentrations (25, 50, 75, 100, 125 ng/µl) from both dsRNAs were used. The treatments with the dsRNA caused concentration dependent nymph mortality. The highest gene expression levels of both AChe and EstFE4 were found in the fourth and fifth nymphal instars. Gene expression analysis showed that AChe genes were downregulated in emerged adults from dsRNA-AChe-treated nymphs compared to controls. However, EstFE4 genes were not affected. In the same manner, treatment with dsRNA-EstFE4 reduced expression level of EstFE4 genes in emerged adults from treated nymphs, but did not affect the expression of AChe genes. In the era of environmentally friendly control strategies, RNAi is a new promising venue to reduce pesticide applications.
Assuntos
Carboxilesterase/antagonistas & inibidores , Hemípteros/enzimologia , Proteínas de Insetos/antagonistas & inibidores , Controle Biológico de Vetores , Interferência de RNA , Sequência de Aminoácidos , Animais , Carboxilesterase/genética , Hemípteros/genética , Proteínas de Insetos/genética , Dados de Sequência Molecular , NinfaRESUMO
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Lividae) transmits the Candidatus Liberibacter asiaticus, which causes citrus greening disease or Huanglongbing, (HLB). To date, there is no efficient cure for HLB disease and the control of D. citri using insecticides became the most important tools for the management of HLB. However, the extensive use of insecticides could increase D. citri resistance to these insecticides. The objective of this study was to investigate the effect of RNA interference of acetylcholinesterase (AChE) on the mortality and susceptibility of D. citri to the four major insecticides used in Florida. In this study, we used a consensus sequence derived from the two AChE genes and cholinesterase 2-like (ChE-2-like) gene to target all of the three genes. Treatment with dsRNA-AChE increased the mortality percentages of both nymphs and adults of D. citri. The mortality percentage increased with the increase in the concentration of applied dsRNA-AChE, and the highest mortality (> 60%) was observed at the highest applied concentration (125ng/µl). Treatments of nymphs or adults with dsRNA-AChE down-regulated the expression of the three targeted genes of D. citri. Silencing of AChE and ChE in D. citri nymphs increased the susceptibility of emerged adults to chlorpyrifos and carbaryl, which act as AChE inhibitors. However, treatment with dsRNA-AChE did not increase the susceptibility of emerged adults to imidacloprid, which acts as an agonist of nicotinic acetylcholine receptors. In the same manner, treatment of adults with dsRNA-AChE increased their susceptibility to chlorpyrifos and carbaryl, but did not affect their susceptibility to imidacloprid. The ANOVA did not show any significant increase in susceptibility of D. citri adults to fenpropathrin after treatment with dsRNA-AChE, either as nymphs or as adults. However, simple linear regression showed that treatment with dsRNA-AChE increased D. citri susceptibility to fenpropathrin, which indicated that AChE could be involved in the metabolism of fenpropathrin. Our results indicated that silencing of AChE and ChE genes in D. citri to increase its susceptibility to insecticides could be a promising tool for the control of this important vector.