Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377818

RESUMO

In pursuit of discovering novel scaffolds that demonstrate potential inhibitory activity against p38α MAPK and possess strong antitumor effects, we herein report the design and synthesis of new series of 17 final target 5-(2,6-dichlorophenyl)-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-7-carboxylic acids (4-20). Chemical characterization of the compounds was performed using FT-IR, NMR, elemental analyses and mass spectra of some representative examples. With many compounds showing potential inhibitory activity against p38α MAPK, two derivatives, 8 and 9, demonstrated the highest activity (>70 % inhibition) among the series. Derivative 9 displayed IC50 value nearly 2.5 folds more potent than 8. As anticipated, they both showed explicit interactions inside the kinase active site with the key binding amino acid residues. Screening both compounds for cytotoxic effects, they exhibited strong antitumor activities against lung (A549), breast (MCF-7 and MDA MB-231), colon (HCT-116) and liver (Hep-G2) cancers more potent than reference 5-FU. Their noticeable strong antitumor activity pointed out to the possibility of an augmented DNA binding mechanism of antitumor action besides their kinase inhibition. Both 8 and 9 exhibited strong ctDNA damaging effects in nanomolar range. Further mechanistic antitumor studies revealed ability of compounds 8 and 9 to arrest cell cycle in MCF-7 cells at S phase, while in HCT-116 treated cells at G0-G1 and G2/M phases. They also displayed apoptotic induction effects in both MCF-7 and HCT-116 with total cell deaths more than control untreated cells in reference to 5-FU. Finally, the compounds were tested for their anti-migratory potential utilizing wound healing assay. They induced a significant decrease in wound closure percentage after 24 h treatment in the examined cancer cells when compared to untreated control MCF-7 and HCT-116 cells better than 5-FU. In silico computation of physicochemical parameters revealed the drug-like properties of 8 and 9 with no violation to Lipinski's rule of five as well as their tolerable ADMET parameters, thus suggesting their utilization as potential future drug leads amenable for further optimization and development.


Assuntos
Antineoplásicos , Proteína Quinase 14 Ativada por Mitógeno , Humanos , Antineoplásicos/química , Ácidos Carboxílicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia
2.
J Enzyme Inhib Med Chem ; 39(1): 2311818, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488131

RESUMO

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Relação Estrutura-Atividade , Substâncias Intercalantes/farmacologia , Tionas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Imidazóis/farmacologia , DNA , Apoptose , Simulação de Acoplamento Molecular , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células
3.
Int J Biol Macromol ; 269(Pt 1): 131821, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679270

RESUMO

Cardiovascular drugs (CVDs) are agents working on the heart and the vascular system to treat many cardiovascular disorders. Such disorders represent the leading cause for morbidity and mortality worldwide. The treatment regimen includes different administered drugs on chronic basis. The cumulative drugs in human body coincides with exposure to electromagnetic radiations from different sources leading to drug-radiation interaction that may lead to drug photosensitization. Such photosensitization may lead to mutagenesis, cancer, and cell death due to molecular damage to DNA. This work involves the application of two bioluminescent genosensors; Terbium chloride and EvaGreen are utilized to investigate potential DNA damage caused by frequently used CVDs following UVA irradiation. A variety of CVDs are investigated. Ten drugs; Amiloride, Atorvastatin, Captopril, Enalapril, Felodipine, Hydrochlorothiazide, Indapamide, Losartan, Triamterene and Valsartan are studied. The study's findings showed that such drugs induced DNA damage following UVA irradiation. The induced DNA damage altered the fluorescence of terbium chloride and EvaGreen genosensors, proportionally. The results are confirmed by viscosity measurements reflecting the possible intercalation of CVDs with DNA. Also, the work is applied on calf thymus DNA to mimic the actual biological variability. The demonstrated bioluminescent genosensors provide automatic, simple and low-cost methods for assessing DNA-drug interactions.


Assuntos
Fármacos Cardiovasculares , Dano ao DNA , DNA , Dano ao DNA/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , DNA/efeitos dos fármacos , Raios Ultravioleta , Animais , Corantes Fluorescentes/química , Humanos , Técnicas Biossensoriais/métodos , Viscosidade , Bovinos , Térbio/química
4.
ACS Omega ; 9(19): 21042-21057, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764636

RESUMO

Combinations of apoptotic inducers are common clinical practice in breast cancer. However, their efficacy is limited by the heterogeneous pharmacokinetic profiles. An advantageous alternative is merging their molecular entities in hybrid multitargeted scaffolds exhibiting synergistic activities and uniform distribution. Herein, we report apoptotic inducers simultaneously targeting DNA and CDK-2 (cyclin-dependent kinase-2) inspired by studies revealing that CDK-2 inhibition sensitizes breast cancer to DNA-damaging agents. Accordingly, rationally substituted pyrimidines and triazolopyrimidines were synthesized and assayed by MTT against MCF-7, MDA-MB231, and Wi-38 cells compared to doxorubicin. The N-(4-amino-2-((2-hydrazinyl-2-oxoethyl)thio)-6-oxo-1,6-dihydropyrimidin-5-yl)acetamide 5 and its p-nitrophenylhydrazone 8 were the study hits against MCF-7 (IC50 = 0.050 and 0.146 µM) and MDA-MB231 (IC50 = 0.826 and 0.583 µM), induced DNA damage at 10.64 and 30.03 nM, and inhibited CDK-2 (IC50 = 0.172 and 0.189 µM). 5 induced MCF-7 apoptosis by 46.75% and disrupted cell cycle during S phase. Docking and MD simulations postulated their stable key interactions.

5.
RSC Med Chem ; 15(8): 2937-2958, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39149093

RESUMO

The unique structure of spirooxindoles and their ability to feature various pharmacophoric motifs render them privileged scaffolds for tailoring new multitarget anticancer agents. Herein, a stereoselective multicomponent reaction was utilized to generate a small combinatorial library of pyrazole-tethered spirooxindoles targeting DNA and CDK2 with free radical scavenging potential as an extra bonus. The designed spirooxindoles were directed to combat NSCLC via inducing apoptosis and alleviating oxidative stress. The series' absolute configuration was assigned by X-ray diffraction analysis. Cytotoxicity screening of the developed spirooxindoles against NSCLC A549 and H460 cells compared to normal lung fibroblasts Wi-38 revealed the sensitivity of A549 cells to the compounds and raised 6e and 6h as the study hits (IC50 ∼ 0.09 µM and SI > 3). They damaged DNA at 24.6 and 35.3 nM, and surpassed roscovitine as CDK2 inhibitors (IC50 = 75.6 and 80.2 nM). Docking and MDs simulations postulated their receptors binding modes. The most potent derivative, 6e, induced A549 apoptosis by 40.85% arresting cell cycle at G2/M phase, and exhibited antioxidant activity in a dose-dependent manner compared to Trolox as indicated by DPPH scavenging assay. Finally, in silico ADMET analysis predicted the drug-likeness properties of 6e.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA