Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256223

RESUMO

Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões do Sistema Vascular , Animais , Humanos , Células Endoteliais , Astrócitos , Inflamação
2.
Mol Psychiatry ; 26(10): 5940-5954, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094584

RESUMO

Traumatic brain injury (TBI) is a risk factor for the later development of neurodegenerative diseases that may have various underlying pathologies. Chronic traumatic encephalopathy (CTE) in particular is associated with repetitive mild TBI (mTBI) and is characterized pathologically by aggregation of hyperphosphorylated tau into neurofibrillary tangles (NFTs). CTE may be suspected when behavior, cognition, and/or memory deteriorate following repetitive mTBI. Exposure to blast overpressure from improvised explosive devices (IEDs) has been implicated as a potential antecedent for CTE amongst Iraq and Afghanistan Warfighters. In this study, we identified biomarker signatures in rats exposed to repetitive low-level blast that develop chronic anxiety-related traits and in human veterans exposed to IED blasts in theater with behavioral, cognitive, and/or memory complaints. Rats exposed to repetitive low-level blasts accumulated abnormal hyperphosphorylated tau in neuronal perikarya and perivascular astroglial processes. Using positron emission tomography (PET) and the [18F]AV1451 (flortaucipir) tau ligand, we found that five of 10 veterans exhibited excessive retention of [18F]AV1451 at the white/gray matter junction in frontal, parietal, and temporal brain regions, a typical localization of CTE tauopathy. We also observed elevated levels of neurofilament light (NfL) chain protein in the plasma of veterans displaying excess [18F]AV1451 retention. These findings suggest an association linking blast injury, tauopathy, and neuronal injury. Further study is required to determine whether clinical, neuroimaging, and/or fluid biomarker signatures can improve the diagnosis of long-term neuropsychiatric sequelae of mTBI.


Assuntos
Encefalopatia Traumática Crônica , Tauopatias , Animais , Biomarcadores , Encéfalo , Humanos , Ratos , Síndrome
3.
J Neurosci Res ; 99(10): 2463-2477, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255876

RESUMO

Traumatic brain injury (TBI) is one of the main causes of death worldwide. It is a complex injury that influences cellular physiology, causes neuronal cell death, and affects molecular pathways in the brain. This in turn can result in sensory, motor, and behavioral alterations that deeply impact the quality of life. Repetitive mild TBI can progress into chronic traumatic encephalopathy (CTE), a neurodegenerative condition linked to severe behavioral changes. While current animal models of TBI and CTE such as rodents, are useful to explore affected pathways, clinical findings therein have rarely translated into clinical applications, possibly because of the many morphofunctional differences between the model animals and humans. It is therefore important to complement these studies with alternative animal models that may better replicate the individuality of human TBI. Comparative studies in animals with naturally evolved brain protection such as bighorn sheep, woodpeckers, and whales, may provide preventive applications in humans. The advantages of an in-depth study of these unconventional animals are threefold. First, to increase knowledge of the often-understudied species in question; second, to improve common animal models based on the study of their extreme counterparts; and finally, to tap into a source of biological inspiration for comparative studies and translational applications in humans.


Assuntos
Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Encefalopatia Traumática Crônica/genética , Encefalopatia Traumática Crônica/patologia , Modelos Animais de Doenças , Animais , Aves , Encéfalo/anatomia & histologia , Caenorhabditis elegans , Cetáceos , Drosophila , Humanos , Camundongos , Ratos , Ovinos , Suínos
4.
Proc Natl Acad Sci U S A ; 112(38): 11965-70, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26372964

RESUMO

The apolipoprotein E4 (ApoE4) allele is the strongest genetic risk factor for developing sporadic Alzheimer's disease (AD). However, the mechanisms underlying the pathogenic nature of ApoE4 are not well understood. In this study, we have found that ApoE proteins are critical determinants of brain phospholipid homeostasis and that the ApoE4 isoform is dysfunctional in this process. We have found that the levels of phosphoinositol biphosphate (PIP2) are reduced in postmortem human brain tissues of ApoE4 carriers, in the brains of ApoE4 knock-in (KI) mice, and in primary neurons expressing ApoE4 alleles compared with those levels in ApoE3 counterparts. These changes are secondary to increased expression of a PIP2-degrading enzyme, the phosphoinositol phosphatase synaptojanin 1 (synj1), in ApoE4 carriers. Genetic reduction of synj1 in ApoE4 KI mouse models restores PIP2 levels and, more important, rescues AD-related cognitive deficits in these mice. Further studies indicate that ApoE4 behaves similar to ApoE null conditions, which fails to degrade synj1 mRNA efficiently, unlike ApoE3 does. These data suggest a loss of function of ApoE4 genotype. Together, our data uncover a previously unidentified mechanism that links ApoE4-induced phospholipid changes to the pathogenic nature of ApoE4 in AD.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Transtornos Cognitivos/complicações , Transtornos Cognitivos/metabolismo , Fosfolipídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apolipoproteína E4/genética , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Coortes , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Homeostase , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases
5.
Brain Inj ; 31(9): 1168-1176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981339

RESUMO

As a follow-up to the 2008 state-of-the-art (SOTA) conference on traumatic brain injuries (TBIs), the 2015 event organized by the United States Department of Veterans Affairs (VA) Office of Research and Development (ORD) analysed the knowledge gained over the last 7 years as it relates to basic scientific methods, experimental findings, diagnosis, therapy, and rehabilitation of TBIs and blast-induced neurotraumas (BINTs). The current article summarizes the discussions and recommendations of the scientific panel attending the Preclinical Modeling and Therapeutic Development Workshop of the conference, with special emphasis on factors slowing research progress and recommendations for ways of addressing the most significant pitfalls.


Assuntos
Traumatismos por Explosões/epidemiologia , Lesões Encefálicas Traumáticas/epidemiologia , Modelos Animais de Doenças , Militares , United States Department of Veterans Affairs/tendências , Animais , Traumatismos por Explosões/psicologia , Traumatismos por Explosões/terapia , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Previsões , Humanos , Militares/psicologia , Estados Unidos/epidemiologia
6.
J Cell Biochem ; 117(10): 2241-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26910498

RESUMO

The objective of this study was to develop an in silico screening model for characterization of potential novel ligands from commercial drug libraries able to functionally activate certain olfactory receptors (ORs), which are members of the class A rhodopsin-like family of G protein couple receptors (GPCRs), in the brain of murine models of concussion. We previously found that concussions may significantly influence expression of certain ORs, for example, OR4M1 in subjects with a history of concussion/traumatic brain injury (TBI). In this study, we built a 3-D OR4M1 model and used it in in silico screening of potential novel ligands from commercial drug libraries. We report that in vitro activation of OR4M1 with the commercially available ZINC library compound 10915775 led to a significant attenuation of abnormal tau phosphorylation in embryonic cortico-hippocampal neuronal cultures derived from NSE-OR4M1 transgenic mice, possibly through modulation of the JNK signaling pathway. The attenuation of abnormal tau phosphorylation was rather selective since ZINC10915775 significantly decreased tau phosphorylation on tau Ser202/T205 (AT8 epitope) and tau Thr212/Ser214 (AT100 epitope), but not on tau Ser396/404 (PHF-1 epitope). Moreover, no response of ZINC10915775 was found in control hippocampal neuronal cultures derived from wild type littermates. Our in silico model provides novel means to pharmacologically modulate select ubiquitously expressed ORs in the brain through high affinity ligand activation to prevent and eventually to treat concussion induced down regulation of ORs and subsequent cascade of tau pathology. J. Cell. Biochem. 117: 2241-2248, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Concussão Encefálica/complicações , Descoberta de Drogas/métodos , Preparações Farmacêuticas/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Animais , Células Cultivadas , Simulação por Computador , Epitopos , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Simulação de Acoplamento Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Long-Evans , Tauopatias/etiologia , Tauopatias/patologia
7.
Curr Neurol Neurosci Rep ; 15(10): 68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26299275

RESUMO

Traumatic brain injury (TBI) is a common cause of morbidity and mortality in military life. Interest in military TBI has increased recently due to the conflicts in Iraq and Afghanistan. Certain types of TBI are relatively unique to the military, the most prominent being blast-related TBI. Blast-related mild TBI has been of particular concern in veterans from the most recent conflicts although controversy remains concerning its separation from post-traumatic stress disorder. TBI is also a risk factor for the later development of neurodegenerative diseases in which cognitive impairment is prominent putting veterans at risk for disorders including Alzheimer's disease and chronic traumatic encephalopathy. Recent evidence associating TBI with chronic cognitive impairment is reviewed in the context of its relevance to military veterans.


Assuntos
Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Veteranos , Traumatismos por Explosões/complicações , Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas/complicações , Transtornos Cognitivos/etiologia , Humanos , Fatores de Risco , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
8.
Front Neurol ; 15: 1339190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313558

RESUMO

Background and objectives: Apathy strongly affects function in Alzheimer's disease and frontotemporal dementia, however its effect on function in Lewy Body Disease (LBD) has not been well-described. This study aims to (1) examine the prevalence and persistence of apathy in a large, national cohort of well-characterized patients with LBD, and (2) estimate the effect of apathy on function over time. Methods: Study included 676 participants with mild cognitive impairment (MCI) or dementia in the National Alzheimer's Coordinating Center Uniform Data Set. Participants were followed for an average of 3.4 ± 1.7 years and consistently had a primary diagnosis of LBD. Apathy was defined by clinician judgment, categorized into four mutually exclusive profiles: (1) never apathetic across all visits, (2) at least one but <50% of visits with apathy (intermittent apathy), (3) ≥50% but not all visits with apathy (persistent apathy), and (4) always apathy across all visits. Dementia severity was measured by baseline Clinical Dementia Rating score. Parkinsonism was defined by the presence of bradykinesia, resting tremor, rigidity, gait, and postural instability. Functional impairment was assessed using the Functional Assessment Questionnaire (FAQ). Results: Baseline characteristics of the sample were: average age = 72.9 ± 6.9, years of education = 15.6 ± 3.4, Mini Mental State Exam (MMSE) = 24.4 ± 5.4, Geriatric Depression Scale (GDS) = 3.8 ± 3.2, FAQ = 12.0 ± 9.1. 78.8% were male and 89% were non-Hispanic white. Prevalence of apathy increased from 54.4% at baseline to 65.5% in year 4. 77% of participants had apathy at some point during follow-up. Independent of cognitive status and parkinsonian features, FAQ was significantly higher in participants with intermittent/persistent and always apathetic than never apathetic. Annual rate of decline in FAQ was faster in participants who were always apathetic than never apathy. Discussion: In this large national longitudinal cohort of LBD patients with cognitive impairment, apathy was strongly associated with greater functional impairment at baseline and faster rate of decline over time. The magnitude of these effects were clinically important and were observed beyond the effects on function from participants' cognitive status and parkinsonism, highlighting the importance of specifically assessing for apathy in LBD.

9.
J Neurotrauma ; 41(5-6): 685-704, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38183627

RESUMO

The long-term effects of exposure to blast overpressure are an important health concern in military personnel. Increase in amyloid beta (Aß) has been documented after non-blast traumatic brain injury (TBI) and may contribute to neuropathology and an increased risk for Alzheimer's disease. We have shown that Aß levels decrease following exposure to a low-intensity blast overpressure event. To further explore this observation, we examined the effects of a single 37 kPa (5.4 psi) blast exposure on brain Aß levels, production, and clearance mechanisms in the acute (24 h) and delayed (28 days) phases post-blast exposure in an experimental rat model. Aß and, notably, the highly neurotoxic detergent soluble Aß42 form, was reduced at 24 h but not 28 days after blast exposure. This reduction was not associated with changes in the levels of Aß oligomers, expression levels of amyloid precursor protein (APP), or increase in enzymes involved in the amyloidogenic cleavage of APP, the ß- and ϒ-secretases BACE1 and presenilin-1, respectively. The levels of ADAM17 α-secretase (also known as tumor necrosis factor α-converting enzyme) decreased, concomitant with the reduction in brain Aß. Additionally, significant increases in brain levels of the endothelial transporter, low-density related protein 1 (LRP1), and enhancement in co-localization of aquaporin-4 (AQP4) to perivascular astrocytic end-feet were observed 24 h after blast exposure. These findings suggest that exposure to low-intensity blast may enhance endothelial clearance of Aß by LRP1-mediated transcytosis and alter AQP4-aided glymphatic clearance. Collectively, the data demonstrate that low-intensity blast alters enzymatic, transvascular, and perivascular clearance of Aß.


Assuntos
Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Animais , Ratos , Ácido Aspártico Endopeptidases , Encéfalo , Precursor de Proteína beta-Amiloide , Aquaporina 4
10.
J Neurotrauma ; 41(5-6): 714-733, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917117

RESUMO

Many military veterans who experienced blast-related traumatic brain injuries in the conflicts in Iraq and Afghanistan currently suffer from chronic cognitive and mental health problems that include depression and post-traumatic stress disorder (PTSD). Male rats exposed to repetitive low-level blast develop cognitive and PTSD-related behavioral traits that are present for more than 1 year after exposure. We previously reported that a group II metabotropic receptor (mGluR2/3) antagonist reversed blast-induced behavioral traits. In this report, we explored mGluR2/3 expression following blast exposure in male rats. Western blotting revealed that mGluR2 protein (but not mGluR3) was increased in all brain regions studied (anterior cortex, hippocampus, and amygdala) at 43 or 52 weeks after blast exposure but not at 2 weeks or 6 weeks. mGluR2 RNA was elevated at 52 weeks while mGluR3 was not. Immunohistochemical staining revealed no changes in the principally presynaptic localization of mGluR2 by blast exposure. Administering the mGluR2/3 antagonist LY341495 after behavioral traits had emerged rapidly reversed blast-induced effects on novel object recognition and cued fear responses 10 months following blast exposure. These studies support alterations in mGluR2 receptors as a key pathophysiological event following blast exposure and provide further support for group II metabotropic receptors as therapeutic targets in the neurobehavioral effects that follow blast injury.


Assuntos
Traumatismos por Explosões , Receptores de Glutamato Metabotrópico , Transtornos de Estresse Pós-Traumáticos , Masculino , Animais , Ratos , Ansiedade , Traumatismos por Explosões/complicações , Tonsila do Cerebelo
11.
J Neurotrauma ; 40(5-6): 561-577, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36262047

RESUMO

Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Ratos , Masculino , Animais , Doenças Neuroinflamatórias , Fator de Iniciação 4E em Eucariotos/metabolismo , Explosões , Lesões Encefálicas Traumáticas/metabolismo , Traumatismos por Explosões/patologia , Tonsila do Cerebelo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Neurosci Lett ; 797: 137080, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36657633

RESUMO

Tauopathies are a heterogeneous group of neurodegenerative disorders that are clinically and pathologically distinct from Alzheimer's disease (AD) having tau inclusions in neurons and/or glia as their most prominent neuropathological feature. BCI-838 (MGS00210) is a group II metabotropic glutamate receptor (mGluR2/3) antagonist pro-drug. Previously, we reported that orally administered BCI-838 improved learning behavior and reduced anxiety in Dutch (APPE693Q) transgenic mice, a model of the pathological accumulation of Aß oligomers found in AD. Herein, we investigated effects of BCI-838 on PS19 male mice that express the tauopathy mutation MAPTP301S associated with human frontotemporal lobar degeneration (FTLD). These mice develop an aging-related tauopathy without amyloid accumulation. Mice were divided into three experimental groups: (1) non-transgenic wild type mice treated with vehicle, (2) PS19 mice treated with vehicle and (3) PS19 mice treated with 5 mg/kg BCI-838. Groups of 10-13 mice were utilized. Vehicle or BCI-838 was administered by oral gavage for 4 weeks. Behavioral testing consisting of a novel object recognition task was conducted after drug administration. Two studies were performed beginning treatment of mice at 3 or 7 months of age. One month of BCI-838 treatment rescued deficits in recognition memory in PS19 mice whether treatment was begun at 3 or 7 months of age. These studies extend the potential utility of BCI-838 to neurodegenerative conditions that have tauopathy as their underlying basis. They also suggest an mGluR2/3 dependent mechanism as a basis for the behavioral deficits in PS19 mice.


Assuntos
Doença de Alzheimer , Pró-Fármacos , Receptores de Glutamato Metabotrópico , Tauopatias , Masculino , Camundongos , Humanos , Animais , Pró-Fármacos/uso terapêutico , Tauopatias/patologia , Proteínas tau/genética , Doença de Alzheimer/patologia , Camundongos Transgênicos , Modelos Animais de Doenças
13.
Neurotrauma Rep ; 4(1): 197-217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020715

RESUMO

Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Male rats subjected to repetitive low-level blast exposure develop chronic cognitive and PTSD-related traits that develop in a delayed manner. Ketamine has received attention as a treatment for refractory depression and PTSD. (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a ketamine metabolite that exerts rapid antidepressant actions. (2R,6R)-HNK has become of clinical interest because of its favorable side-effect profile, low abuse potential, and oral route of administration. We treated three cohorts of blast-exposed rats with (2R,6R)-HNK, beginning 7-11 months after blast exposure, a time when the behavioral phenotype is established. Each cohort consisted of groups (n = 10-13/group) as follows: 1) Sham-exposed treated with saline, 2) blast-exposed treated with saline, and 3) blast-exposed treated with a single dose of 20 mg/kg of (2R,6R)-HNK. (2R,6R)-HNK rescued blast-induced deficits in novel object recognition (NOR) and anxiety-related features in the elevated zero maze (EZM) in all three cohorts. Exaggerated acoustic startle was reversed in cohort 1, but not in cohort 3. (2R,6R)-HNK effects were still present in the EZM 12 days after administration in cohort 1 and 27 days after administration in NOR testing of cohorts 2 and 3. (2R,6R)-HNK may be beneficial for the neurobehavioral syndromes that follow blast exposure in military veterans. Additional studies will be needed to determine whether higher doses or more extended treatment regimens may be more effective.

14.
Acta Neuropathol Commun ; 11(1): 81, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173747

RESUMO

In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.


Assuntos
Malformações Arteriovenosas , Traumatismos por Explosões , Ratos , Masculino , Animais , Remodelação Vascular , Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Encéfalo/patologia , Inflamação/patologia , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/patologia , Modelos Animais de Doenças
15.
Hum Genet ; 131(4): 535-63, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22167414

RESUMO

Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.


Assuntos
Modelos Animais de Doenças , Doenças Neurodegenerativas/genética , Transgenes/genética , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/terapia , Proteínas Nucleares/genética
16.
BMC Biochem ; 13: 28, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23259730

RESUMO

BACKGROUND: Presenilin-1 (PS1) is a transmembrane protein first discovered because of its association with familial Alzheimer's disease. Mice with null mutations in PS1 die shortly after birth exhibiting multiple CNS and non-CNS abnormalities. One of the most prominent features in the brains of PS1-/- embryos is a vascular dysgenesis that leads to multiple intracerebral hemorrhages. The molecular and cellular basis for the vascular dysgenesis in PS1-/- mice remains incompletely understood. Because the extracellular matrix plays key roles in vascular development we hypothesized that an abnormal extracellular matrix might be present in endothelial cells lacking PS1 and examined whether the lack of PS1 affects expression of fibronectin a component of the extracellular matrix known to be essential for vascular development. RESULTS: We report that primary as well as continuously passaged PS1-/- endothelial cells contain more fibronectin than wild type cells and that the excess fibronectin in PS1-/- endothelial cells is incorporated into a fibrillar network. Supporting the in vivo relevance of this observation fibronectin expression was increased in microvascular preparations isolated from E14.5 to E18.5 PS1-/- embryonic brain. Reintroduction of PS1 into PS1-/- endothelial cells led to a progressive decrease in fibronectin levels showing that the increased fibronectin in PS1-/- endothelial cells was due to loss of PS1. Increases in fibronectin protein in PS1-/- endothelial cells could not be explained by increased levels of fibronectin RNA nor based on metabolic labeling studies by increased protein synthesis. Rather we show based on the rate of turnover of exogenously added biotinylated fibronectin that increased fibronectin in PS1-/- endothelial cells results from a slower degradation of the fibronectin fibrillar matrix on the cell surface. CONCLUSIONS: These studies show that PS1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells. These studies provide molecular clues that may help to explain the origin of the vascular dysgenesis that develops in PS1-/- embryonic mice.


Assuntos
Células Endoteliais/metabolismo , Fibronectinas/metabolismo , Presenilina-1/metabolismo , Animais , Encéfalo/metabolismo , Ácido Desoxicólico/farmacologia , Células Endoteliais/efeitos dos fármacos , Fibronectinas/genética , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Presenilina-1/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
J Neurosci ; 30(5): 1788-97, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20130188

RESUMO

PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Destreza Motora , Mutação , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Envelhecimento/metabolismo , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Transgênicos , Atividade Motora/genética
18.
Am J Pathol ; 176(1): 353-68, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20008141

RESUMO

Mutations in the presenilin 1 (PS1) gene are the most commonly recognized cause of familial Alzheimer's disease (FAD). Besides senile plaques, neurofibrillary tangles, and neuronal loss, Alzheimer's disease (AD) is also accompanied by vascular pathology. Here we describe an age-related vascular pathology in two lines of PS1 FAD-mutant transgenic mice that mimics many features of the vascular pathology seen in AD. The pathology was especially prominent in the microvasculature whose vessels became thinned and irregular with the appearance of many abnormally looped vessels as well as string vessels. Stereologic assessments revealed a reduction of the microvasculature in the hippocampus that was accompanied by hippocampal atrophy. The vascular changes were not congophilic. Yet, despite the lack of congophilia, penetrating vessels at the cortical surface were often abnormal morphologically and microhemorrhages sometimes occurred. Altered immunostaining of blood vessels with basement membrane-associated antigens was an early feature of the microangiopathy and was associated with thickening of the vascular basal laminae and endothelial cell alterations that were visible ultrastructurally. Interestingly, although the FAD-mutant transgene was expressed in neurons in both lines of mice, there was no detectable expression in vascular endothelial cells or glial cells. These studies thus have implications for the role of neuronal to vascular signaling in the pathogenesis of the vascular pathology associated with AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/genética , Vasos Sanguíneos/patologia , Mutação/genética , Presenilina-1/metabolismo , Envelhecimento/metabolismo , Animais , Atrofia , Membrana Basal/metabolismo , Vasos Sanguíneos/anormalidades , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/ultraestrutura , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Cromossomos Artificiais de Bacteriófago P1/genética , Dendritos/metabolismo , Dendritos/patologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/anormalidades , Microvasos/metabolismo , Microvasos/patologia , Microvasos/ultraestrutura , Proteínas Mutantes/metabolismo , Transgenes/genética
19.
J Comp Neurol ; 529(2): 340-366, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32415669

RESUMO

Vascular structures in the developing brain are thought to form via angiogenesis from preformed blood vessels in the cephalic mesenchyme. Immunohistochemical studies of developing mouse brain from E10.5 to E13.5 revealed the presence of avascular blood islands of primitive erythroid cells expressing hemangioblast markers (Flk1, Tal1/Scl1, platelet endothelial cell adhesion molecule 1, vascular endothelial-cadherin, and CD34) and an endothelial marker recognized by Griffonia simplicifolia isolectin B4 (IB4) in the cephalic mesenchyme. These cells formed a perineural vascular plexus from which angiogenic sprouts originated and penetrated the neuroepithelium. In addition, avascular isolated cells expressing primitive erythroid, hemangioblast and endothelial makers were visible in the neuroepithelium where they generated vasculogenic and hemogenic foci. From E10.5 to E13.5, these vasculogenic foci were a source of new blood vessel formation in the developing brain. In vitro, cultured E13.5 brain endothelial cells contained hemogenic endothelial cells capable of generating erythroid cells. Similar cells were present in primary cultures of dissociated cells from E10.5 embryonic head. Our results provide new evidence that the brain vasculature, like that of the yolk sac and the eye choriocapillaris and hyaloid vascular systems, develops at least in part via hemovasculogenesis, a process in which vasculogenesis and hematopoiesis occur simultaneously.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Endotélio Vascular/embriologia , Animais , Encéfalo/citologia , Endotélio Vascular/citologia , Feminino , Camundongos , Morfogênese/fisiologia , Gravidez , Saco Vitelino/irrigação sanguínea , Saco Vitelino/citologia , Saco Vitelino/embriologia
20.
Alzheimers Dement (Amst) ; 13(1): e12169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141391

RESUMO

INTRODUCTION: Understanding of the natural history of apathy and its impact on patient function is limited. This study examines, in a large, national sample of Alzheimer's disease (AD) patients with long follow-ups: (1) prevalence, incidence, and persistence of apathy, and (2) impact of apathy on function across dementia severity. METHODS: A longitudinal study of 9823 well-characterized AD patients in the National Alzheimer's Coordinating Center Uniform Data Set. RESULTS: Apathy was highly prevalent across disease severity with cumulative prevalence of 48%, 74%, and 82% in Clinical Dementia Rating (CDR) 0.5, 1.0, and 2.0, respectively. Persistence of apathy from clinician judgment varied from visit to visit at earlier disease stages but remained high at moderate dementia. Independent of cognition, persistent apathy was strongly associated with accelerated rate of functional decline. DISCUSSION: Findings point to important targets for the treatment and management of apathy, include functional outcomes, and study designs that account for variable persistence of the apathy syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA