Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38883727

RESUMO

Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which has broad applications in molecular biology, medicine, and biotechnology. Existing exon skipping techniques include antisense oligonucleotides, targetable nucleases, and base editors, which, while effective for specific applications at some target exons, remain hindered by shortcomings, including transient effects for oligonucleotides, genotoxicity for nucleases and inconsistent exon skipping for base editors. To overcome these limitations, we created SPLICER, a toolbox of next-generation base editors consisting of near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing with SPLICER improves exon skipping, reduces aberrant outcomes, including cryptic splicing and intron retention, and enables skipping of exons refractory to single splice-site editing. To demonstrate the therapeutic potential of SPLICER, we targeted APP exon 17, which encodes the amino acid residues that are cleaved to form the Aß plaques in Alzheimer's disease. SPLICER reduced the formation of Aß42 peptides in vitro and enabled efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient toolbox for exon skipping with broad therapeutic applications.

2.
bioRxiv ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39005280

RESUMO

Huntington's disease (HD) is an inherited and ultimately fatal neurodegenerative disorder caused by an expanded polyglutamine-encoding CAG repeat within exon 1 of the huntingtin (HTT) gene, which produces a mutant protein that destroys striatal and cortical neurons. Importantly, a critical event in the pathogenesis of HD is the proteolytic cleavage of the mutant HTT protein by caspase-6, which generates fragments of the N-terminal domain of the protein that form highly toxic aggregates. Given the role that proteolysis of the mutant HTT protein plays in HD, strategies for preventing this process hold potential for treating the disorder. By screening 141 CRISPR base editor variants targeting splice elements in the HTT gene, we identified platforms capable of producing HTT protein isoforms resistant to caspase-6-mediated proteolysis via editing of the splice acceptor sequence for exon 13. When delivered to the striatum of a rodent HD model, these base editors induced efficient exon skipping and decreased the formation of the N-terminal fragments, which in turn reduced HTT protein aggregation and attenuated striatal and cortical atrophy. Collectively, these results illustrate the potential for CRISPR base editing to decrease the toxicity of the mutant HTT protein for HD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA