Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2212849120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630452

RESUMO

Protein folding is crucial for biological activity. Proteins' failure to fold correctly underlies various pathological processes, including amyloidosis, the aggregation of insoluble proteins (e.g., lysozymes) in organs. The exact conditions that trigger the structural transition of amyloids into ß-sheet-rich aggregates are poorly understood, as is the case for the amyloidogenic self-assembly pathway. Ultrasound is routinely used to destabilize a protein's structure and enhance amyloid growth. Here, we report on an unexpected ultrasound effect on lysozyme amyloid species at different stages of aggregation: ultrasound-induced structural perturbation gives rise to nonamyloidogenic folds. Our infrared and X-ray analyses of the chemical, mechanical, and thermal effects of sound on lysozyme's structure found, in addition to the expected ultrasound-induced damage, evidence of irreversible disruption of the ß-sheet fold of fibrillar lysozyme resulting in their structural transformation into monomers with no ß-sheets. This structural transition is reflected in changes in the kinetics of protein self-assembly, namely, either prolonged nucleation or accelerated fibril growth. Using solution X-ray scattering, we determined the structure, the mass fraction of lysozyme monomer, and the morphology of its filamentous assemblies formed under different sound parameters. A nanomechanical analysis of ultrasound-modified protein assemblies revealed a correlation between the ß-sheet content and elastic modulus of the protein material. Suppressing one of the ultrasound-derived effects allowed us to control the structural transformations of lysozyme. Overall, our comprehensive investigation establishes the boundary conditions under which ultrasound damages protein structure and fold. This knowledge can be utilized to impose medically desirable structural modifications on amyloid ß-sheet-rich proteins.


Assuntos
Amiloidose , Muramidase , Humanos , Muramidase/química , Peptídeos beta-Amiloides/química , Amiloide/química , Dobramento de Proteína
2.
Small ; 20(22): e2308069, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148317

RESUMO

A notable feature of complex cellular environments is protein-rich compartments that are formed via liquid-liquid phase separation. Recent studies have shown that these biomolecular condensates can play both promoting and inhibitory roles in fibrillar protein self-assembly, a process that is linked to Alzheimer's, Parkinson's, Huntington's, and various prion diseases. Yet, the exact regulatory role of these condensates in protein aggregation remains unknown. By employing microfluidics to create artificial protein compartments, the self-assembly behavior of the fibrillar protein lysozyme within them can be characterized. It is observed that the volumetric parameters of protein-rich compartments can change the kinetics of protein self-assembly. Depending on the change in compartment parameters, the lysozyme fibrillation process either accelerated or decelerated. Furthermore, the results confirm that the volumetric parameters govern not only the nucleation and growth phases of the fibrillar aggregates but also affect the crosstalk between the protein-rich and protein-poor phases. The appearance of phase-separated compartments in the vicinity of natively folded protein complexes triggers their abrupt percolation into the compartments' core and further accelerates protein aggregation. Overall, the results of the study shed more light on the complex behavior and functions of protein-rich phases and, importantly, on their interaction with the surrounding environment.


Assuntos
Muramidase , Muramidase/química , Muramidase/metabolismo , Agregados Proteicos , Cinética , Proteínas/química , Proteínas/metabolismo , Amiloide/química , Amiloide/metabolismo
3.
Langmuir ; 39(26): 8984-8995, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37343062

RESUMO

The rheological characteristics of pre-spun native silk protein, which is stored as a viscous pulp inside the silk gland, are the key factors that determine the mechanical performance of the endpoint material: the spun silk fibers. In silkworms and arthropods, microcompartmentalization was shown to play an important regulatory role in storing and stabilizing the aggregation-prone silk and in initiating the fibrillar self-assembly process. However, our current understanding of the mechanism of stabilization of the highly unstable protein pulp in its soluble state inside the microcompartments and of the conditions required for initiating the structural transition in protein inside the microcompartments remains limited. Here, we exploited the power of droplet microfluidics to mimic the silk protein's microcompartmentalization event; we introduced changes in the chemical environment and analyzed the storage-to-spinning transition as well as the accompanying structural changes in silk fibroin protein, from its native fold into an aggregative ß-sheet-rich structure. Through a combination of experimental and computational simulations, we established the conditions under which the structural transition in microcompartmentalized silk protein is initiated, which, in turn, is reflected in changes in the silk-rich fluid behavior. Overall, our study sheds light on the role of the independent parameters of a dynamically changing chemical environment, changes in fluid viscosity, and the shear forces that act to balance silk protein self-assembly, and thus, facilitate new exploratory avenues in the field of biomaterials.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Bombyx/química , Fibroínas/química , Reologia , Microfluídica
4.
Small ; 17(26): e2007188, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050722

RESUMO

Peptides and proteins have evolved to self-assemble into supramolecular entities through a set of non-covalent interactions. Such structures and materials provide the functional basis of life. Crucially, biomolecular assembly processes can be highly sensitive to and modulated by environmental conditions, including temperature, light, ionic strength and pH, providing the inspiration for the development of new classes of responsive functional materials based on peptide building blocks. Here, it is shown that the stimuli-responsive assembly of amyloidogenic peptide can be used as the basis of environmentally responsive microcapsules which exhibit release characteristics triggered by a change in pH. The microcapsules are biocompatible and biodegradable and may act as vehicles for controlled release of a wide range of biomolecules. Cryo-SEM images reveal the formation of a fibrillar network of the capsule interior with discrete compartments in which cargo molecules can be stored. In addition, the reversible formation of these microcapsules by modulating the solution pH is investigated and their potential application for the controlled release of encapsulated cargo molecules, including antibodies, is shown. These results suggest that the approach described here represents a promising venue for generating pH-responsive functional peptide-based materials for a wide range of potential applications for molecular encapsulation, storage, and release.


Assuntos
Peptídeos , Cápsulas , Concentração de Íons de Hidrogênio , Temperatura
5.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834017

RESUMO

Cyclic 6-membered aromatic compounds such as benzene and azabenzenes (pyridine, pyridazine, and pyrazine) are known to be light-sensitive, affording, in particular, the Dewar benzene type of intermediates. Pyridine is known to provide the only Dewar pyridine intermediate that undergoes reversible ring-opening. We found that irradiation of photosensitive gels prepared from poly(4-vinyl pyridine) and pyridine at 254 or 312 nm leads to pyridine ring-opening and subsequent formation of 5-amino-2,4-pentadienals. We show that this light-induced process is only partially reversible, and that the photogenerated aminoaldehyde and aminoaldehyde-pending groups undergo self-condensation to produce cross-linked, conjugated oligomers that absorb light in the visible spectrum up to the near-infrared range. Such a sequence of chemical reactions results in the formation of gel with two distinct morphologies: spheres and fiber-like matrices. To gain deeper insight into this process, we prepared poly(4-vinyl pyridine) with low molecular weight (about 2000 g/mol) and monitored the respective changes in absorption, fluorescence, 1H-NMR spectra, and electrical conductivity. The conductivity of the polymer gel upon irradiation changes from ionic to electronic, indicative of a conjugated molecular wire behavior. Quantum mechanical calculations confirmed the feasibility of the proposed polycondensation process. This new polyacetylene analog has potential in thermal energy-harvesting and sensor applications.

6.
PLoS Pathog ; 13(3): e1006245, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257521

RESUMO

Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites.


Assuntos
Exossomos/metabolismo , Trypanosoma brucei brucei/metabolismo , Northern Blotting , Linhagem Celular , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Microscopia Eletrônica , Imagem com Lapso de Tempo
7.
Mol Microbiol ; 102(1): 1-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161313

RESUMO

Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD.


Assuntos
Calpaína/metabolismo , RNA Líder para Processamento/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Inativação Gênica/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosforilação , Transporte Proteico , Proteoma , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/antagonistas & inibidores , Transcriptoma , Trypanosoma brucei brucei/citologia , Resposta a Proteínas não Dobradas
8.
RNA Biol ; 12(11): 1222-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970223

RESUMO

Trypanosomatids are protozoan parasites and the causative agent of infamous infectious diseases. These organisms regulate their gene expression mainly at the post-transcriptional level and possess characteristic RNA processing mechanisms. In this study, we analyzed the complete repertoire of Leishmania major small nucleolar (snoRNA) RNAs by performing RNA-seq analysis on RNAs that were affinity-purified using the C/D snoRNA core protein, SNU13, and the H/ACA core protein, NHP2. This study revealed a large collection of C/D and H/ACA snoRNAs, organized in gene clusters generally containing both snoRNA types. Abundant snoRNAs were identified and predicted to guide trypanosome-specific rRNA cleavages. The repertoire of snoRNAs was compared to that of the closely related Trypanosoma brucei, and 80% of both C/D and H/ACA molecules were found to have functional homologues. The comparative analyses elucidated how snoRNAs evolved to generate molecules with analogous functions in both species. Interestingly, H/ACA RNAs have great flexibility in their ability to guide modifications, and several of the RNA species can guide more than one modification, compensating for the presence of single hairpin H/ACA snoRNA in these organisms. Placing the predicted modifications on the rRNA secondary structure revealed hypermodification regions mostly in domains which are modified in other eukaryotes, in addition to trypanosome-specific modifications.


Assuntos
Genoma de Protozoário , Estudo de Associação Genômica Ampla , Leishmania major/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Biblioteca Gênica , Leishmania major/metabolismo , Família Multigênica , Conformação de Ácido Nucleico , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Trypanosoma/genética , Trypanosoma/metabolismo
9.
RNA Biol ; 11(6): 715-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24922194

RESUMO

In trypanosomes, mRNAs are processed by trans-splicing; in this process, a common exon, the spliced leader, is added to all mRNAs from a small RNA donor, the spliced leader RNA (SL RNA). However, little is known regarding how this process is regulated. In this study we investigated the function of two serine-arginine-rich proteins, TSR1 and TSR1IP, implicated in trans-splicing in Trypanosoma brucei. Depletion of these factors by RNAi suggested their role in both cis- and trans-splicing. Microarray was used to examine the transcriptome of the silenced cells. The level of hundreds of mRNAs was changed, suggesting that these proteins have a role in regulating only a subset of T. brucei mRNAs. Mass-spectrometry analyses of complexes associated with these proteins suggest that these factors function in mRNA stability, translation, and rRNA processing. We further demonstrate changes in the stability of mRNA as a result of depletion of the two TSR proteins. In addition, rRNA defects were observed under the depletion of U2AF35, TSR1, and TSR1IP, but not SF1, suggesting involvement of SR proteins in rRNA processing.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/metabolismo , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Ribossômico/genética , Proteínas de Ligação a RNA/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Motivos de Aminoácidos , Núcleo Celular/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Ordem dos Genes , Inativação Gênica , Loci Gênicos , Espectrometria de Massas , Transporte Proteico , Proteínas de Protozoários/química , Sinais de Poliadenilação na Ponta 3' do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Proteínas de Ligação a RNA/química , Trans-Splicing , Transcrição Gênica , Transcriptoma
10.
ACS Appl Mater Interfaces ; 16(7): 9210-9223, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330192

RESUMO

Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded ß-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.


Assuntos
Fibroínas , Nanoestruturas , Seda/química , Fibroínas/química , Polissacarídeos , Pectinas , Materiais Biocompatíveis/química
11.
ACS Omega ; 7(51): 47747-47754, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591209

RESUMO

The spontaneous gelation of poly(4-vinyl pyridine)/pyridine solution produces materials with conductive properties that are suitable for various energy conversion technologies. The gel is a thermoelectric material with a conductivity of 2.2-5.0 × 10-6 S m-1 and dielectric constant ε = 11.3. On the molecular scale, the gel contains various types of hydrogen bonding, which are formed via self-protonation of the pyridine side chains. Our measurements and calculations revealed that the gelation process produces bias-dependent polymer complexes: quasi-symmetric, strongly hydrogen-bonded species, and weakly bound protonated structures. Under an applied DC bias, the gelled complexes differ in their capacitance/conductive characteristics. In this work, we exploited the bias-responsive characteristics of poly(4-vinyl pyridine) gelled complexes to develop a prototype of a thermal energy harvesting device. The measured device efficiency is S = ΔV/ΔT = 0.18 mV/K within the temperature range of 296-360 K. Investigation of the mechanism underlying the conversion of thermal energy into electric charge showed that the heat-controlled proton diffusion (the Soret effect) produces thermogalvanic redox reactions of hydrogen ions on the anode. The charge can be stored in an external capacitor for heat energy harvesting. These results advance our understanding of the molecular mechanisms underlying thermal energy conversion in the poly(4-vinyl pyridine)/pyridine gel. A device prototype, enabling thermal energy harvesting, successfully demonstrates a simple path toward the development of inexpensive, low-energy thermoelectric generators.

12.
Small ; 7(8): 1068-74, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21456085

RESUMO

Biological macromolecules, including DNA, RNA, and proteins, have intrinsic features that make them potential building blocks for the bottom-up fabrication of nanodevices. Unlike DNA, RNA is a more versatile molecule whose range in the cell is from 21 to thousands of nucleotides and is usually folded into stem and loop structures. RNA is unique in nanoscale fabrication due to its diversity in size, function, and structure. Because gene expression analysis is becoming a clinical reality and there is a need to collect RNA in minute amounts from clinical samples, keeping the RNA intact is a growing challenge. RNA samples are notoriously difficult to handle because of their highly labile nature and tendency to degrade even under controlled RNase-free conditions and maintenance in the cold. Silencing the RNA that induces the RNA interference is viewed as the next generation of therapeutics. The stabilization and delivery of RNA to cells are the major concerns in making siRNAs usable drugs. For the first time, ultrasonic waves are shown to convert native RNA molecules to RNA nanospheres. The creation of the nanobubbles is performed by a one-step reaction. The RNA nanospheres are stable at room temperature for at least one month. Additionally, the nanospheres can be inserted into mammalian cancer cells (U2OS). This research achieves: 1) a solution to RNA storage; and 2) a way to convert RNA molecules to RNA particles. RNA nanosphere formation is a reversible process, and by using denaturing conditions, the RNA can be refolded into intact molecules.


Assuntos
Nanosferas/química , Estabilidade de RNA , RNA/química , Ultrassom/métodos , Linhagem Celular Tumoral , Humanos , Luz , Microesferas , Nanosferas/ultraestrutura , Tamanho da Partícula , RNA/metabolismo , RNA/ultraestrutura , Espalhamento de Radiação
13.
Commun Chem ; 4(1): 62, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36697777

RESUMO

The process of amyloid nanofibril formation has broad implications including the generation of the strongest natural materials, namely silk fibers, and their major contribution to the progression of many degenerative diseases. The key question that remains unanswered is whether the amyloidogenic nature, which includes the characteristic H-bonded ß-sheet structure and physical characteristics of protein assemblies, can be modified via controlled intervention of the molecular interactions. Here we show that tailored changes in molecular interactions, specifically in the H-bonded network, do not affect the nature of amyloidogenic fibrillation, and even have minimal effect on the initial nucleation events of self-assembly. However, they do trigger changes in networks at a higher hierarchical level, namely enhanced 2D packaging which is rationalized by the 3D hierarchy of ß-sheet assembly, leading to variations in fibril morphology, structural composition and, remarkably, nanomechanical properties. These results pave the way to a better understanding of the role of molecular interactions in sculpting the structural and physical properties of protein supramolecular constructs.

14.
Plant J ; 60(6): 1031-42, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19754518

RESUMO

Approximately 20% of plant genes possess upstream open-reading frames (uORFs). The effect of uORFs on gene expression has mainly been studied at the translational level. Very little is known about the impact of plant uORFs on transcript content through the nonsense-mediated mRNA decay (NMD) pathway, which degrades transcripts bearing premature termination codons (PTCs). Here we examine the impact of the uORF of the Arabidopsis AtMHX gene on transcript accumulation. The suggestion that this uORF exposes transcripts containing it to NMD is supported by (i) the increase in transcript levels upon eliminating the uORF from constructs containing it, (ii) experiments with a modified uORF-peptide, which excluded peptide-specific degradation mechanisms, (iii) the increase in levels of the native AtMHX transcript upon treatment with cycloheximide, which inhibits translation and blocks NMD, and (iv) the sensitivity of transcripts containing the uORF of AtMHX to the presence of introns. We also showed that introns can increase NMD efficiency not only in transcripts having relatively short 3' untranslated regions (UTRs), but also in uORF-containing transcripts. AtMHX transcript levels were almost unaltered in mutants of the NMD factors UPF3 and UPF1. Possible reasons, including the existence of a NMD-compensatory mechanism, are discussed. Interestingly, the levels of UPF3 transcript were higher in upf1 mutants, suggesting a compensatory mechanism that links weak function of the NMD machinery to increased expression of UPF3. Our findings highlight that uORFs, which are abundant in plants, can not only inhibit translation but also strongly affect transcript accumulation.


Assuntos
Antiporters/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fases de Leitura Aberta , Estabilidade de RNA , Regiões 3' não Traduzidas , Antiporters/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Códon sem Sentido , Cicloeximida/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Íntrons , Mutagênese Insercional , RNA de Plantas/genética , RNA de Plantas/metabolismo
16.
Sci Rep ; 6: 25296, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142987

RESUMO

The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts.


Assuntos
Estágios do Ciclo de Vida , Pseudouridina/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Trypanosoma brucei brucei/fisiologia , Adaptação Fisiológica , Perfilação da Expressão Gênica , RNA Nucleolar Pequeno/química , Análise de Sequência de RNA
17.
Adv Healthc Mater ; 4(5): 723-8, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25425122

RESUMO

The spread of antibiotic-resistant bacteria and parasites calls for the development of new therapeutic strategies with could potentially reverse this trend. Here, a proposal is presented to exploit a sonochemical method to restore the antibiotic activity of tetracycline (TTCL) against resistant bacteria by converting the antibiotic into a nanoparticulate form. The demonstrated sonochemical method allows nanoscale TTCL assembly to be driven by supramolecular hydrogen bond formation, with no further modification to the antibiotic's chemical structure. It is shown that tetracycline nanoparticles (TTCL NPs) can act as antibacterial agents, both against TTCL sensitive and against resistant bacterial strains. Moreover, the synthesized antibiotic nanoparticles (NPs) can act as effective gene-silencing agents through the use of a TTCL repressor in Trypanosome brucei parasites. It is demonstrated that the NPs are nontoxic to human cells and T. brucei parasites and are able to release their monomer components in an active form in a manner that results in enhanced antimicrobial activity relative to a homogeneous solution of the precursor monomer. As the TTCL NPs are biocompatible and biodegradable, sonochemical formation of TTCL NPs represents a new promising approach for generation of pharmaceutically active nanomaterials.


Assuntos
Antibacterianos/química , Inativação Gênica/efeitos dos fármacos , Nanopartículas/química , Tetraciclina/química , Antibacterianos/farmacologia , Linhagem Celular , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Tetraciclina/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
18.
J Mater Chem B ; 1(1): 82-90, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32260615

RESUMO

In the present work we used sonochemically prepared proteinaceous BSA spheres as a novel RNA-delivery system. The preparation of RNA-loaded BSA spheres was accomplished using an environmental friendly method termed the "ultrasonic emulsification method". It was demonstrated that ultrasonic waves do not cause the RNA chains to degrade and the RNA molecules remain untouched. The BSA-RNA complex was successfully introduced into mammalian (human) U2OS osteosarcoma cells and Trypanosoma brucei parasites. Using PVA coating of the RNA-BSA spheres we have achieved a significant increase in the number of microspheres penetrating mammalian cells. The mechanism of RNA encapsulation and the structure of the RNA-BSA complex are reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA