Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220188, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866389

RESUMO

Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.5° N is carried by the zonally averaged overturning circulation, and an even larger fraction of the heat transport variability (approx. 95%) is explained by the variability of the zonally averaged overturning. A physically based separation of the heat transport into large-scale AMOC, gyre and shallow wind-driven overturning components remains challenging and requires new investigations and approaches. We review the major interannual changes in the AMOC and MHT that have occurred over the nearly two decades of available observations and their documented impacts on North Atlantic heat content. Changes in the flow-weighted temperature of the Florida Current (Gulf Stream) over the past two decades are now taken into account in the estimates of MHT, and have led to an increased heat transport relative to the AMOC strength in recent years. Estimates of the MHT at 26.5° N from coupled models and various surface flux datasets still tend to show low biases relative to the observations, but indirect estimates based on residual methods (top of atmosphere net radiative flux minus atmospheric energy divergence) have shown recent promise in reproducing the heat transport and its interannual variability. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

2.
Nature ; 540(7634): 570-573, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27828944

RESUMO

Western boundary currents-such as the Agulhas Current in the Indian Ocean-carry heat poleward, moderating Earth's climate and fuelling the mid-latitude storm tracks. They could exacerbate or mitigate warming and extreme weather events in the future, depending on their response to anthropogenic climate change. Climate models show an ongoing poleward expansion and intensification of the global wind systems, most robustly in the Southern Hemisphere, and linear dynamical theory suggests that western boundary currents will intensify and shift poleward as a result. Observational evidence of such changes comes from accelerated warming and air-sea heat flux rates within all western boundary currents, which are two or three times faster than global mean rates. Here we show that, despite these expectations, the Agulhas Current has not intensified since the early 1990s. Instead, we find that it has broadened as a result of more eddy activity. Recent analyses of other western boundary currents-the Kuroshio and East Australia currents-hint at similar trends. These results indicate that intensifying winds may be increasing the eddy kinetic energy of boundary currents, rather than their mean flow. This could act to decrease poleward heat transport and increase cross-frontal exchange of nutrients and pollutants between the coastal ocean and the deep ocean. Sustained in situ measurements are needed to properly understand the role of these current systems in a changing climate.

3.
Sci Data ; 11(1): 943, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209847

RESUMO

A dataset consisting of numerically simulated oceanic velocities and sea surface height changes, provided conjointly from Eulerian and Lagrangian points of view, is made available as cloud-optimized archives on a cloud storage platform for unrestricted access. The Eulerian component of the dataset comprises oceanic velocity components at 0 m and 15 m depth, as well as total and steric sea surface height changes, obtained at hourly time steps for one year, with an approximate horizontal resolution of 1/25 degree on an irregular global geographical spatial grid, from the HYbrid Coordinate Ocean Model. The Lagrangian component of the dataset comprises the trajectories of particles advected in the Eulerian velocity field of the model. The particles were advected forward and backward for 30 days from a regular 1/4 degree grid in order to achieve 60-day long trajectories at 0 m and 15 m depths, with start times separated by 30 days, in 11 releases. This integrated dataset may help to link Eulerian and Lagrangian observational perspectives.

4.
Sci Data ; 9(1): 567, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104340

RESUMO

A dataset of sea surface temperature (SST) estimates is generated from the temperature observations of surface drifting buoys of NOAA's Global Drifter Program. Estimates of SST at regular hourly time steps along drifter trajectories are obtained by fitting to observations a mathematical model representing simultaneously SST diurnal variability with three harmonics of the daily frequency, and SST low-frequency variability with a first degree polynomial. Subsequent estimates of non-diurnal SST, diurnal SST anomalies, and total SST as their sum, are provided with their respective standard uncertainties. This Lagrangian SST dataset has been developed to match the existing and on-going hourly dataset of position and velocity from the Global Drifter Program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA