Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsy Behav ; 116: 107732, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493807

RESUMO

BACKGROUND: ATP1A2 mutations cause hemiplegic migraine with or without epilepsy or acute reversible encephalopathy. Typical onset is in adulthood or older childhood without subsequent severe long-term developmental impairments. AIM: We aimed to describe the manifestations of early onset severe ATP1A2-related epileptic encephalopathy and its underlying mutations in a cohort of seven patients. METHODS: A retrospective chart review of a cohort of seven patients was conducted. Response to open-label memantine therapy, used off-label due to its NMDA receptor antagonist effects, was assessed by the Global Rating Scale of Change (GRSC) and Clinical Global Impression Scale of Improvement (CGI-I) methodologies. Molecular modeling was performed using PyMol program. RESULTS: Patients (age 2.5-20 years) had symptom onset at an early age (6 days-1 year). Seizures were either focal or generalized. Common features were: drug resistance, recurrent status epilepticus, etc., severe developmental delay with episodes of acute severe encephalopathy often with headaches, dystonias, hemiplegias, seizures, and developmental regression. All had variants predicted to be disease causing (p.Ile293Met, p.Glu1000Lys, c.1017+5G>A, p.Leu809Arg, and 3 patients with p.Met813Lys). Modeling revealed that mutations interfered with ATP1A2 ion binding and translocation sites. Memantine, given to five, was tolerated in all (mean treatment: 2.3 years, range 6 weeks-4.8 years) with some improvements reported in all five. CONCLUSIONS: Our observations describe a distinctive clinical profile of seven unrelated probands with early onset severe ATP1A2-related epileptic encephalopathy, provide insights into structure-function relationships of ATP1A2 mutations, and support further studies of NMDAR antagonist therapy in ATP1A2-encephalopathy.


Assuntos
Encefalopatias , Epilepsia , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Mutação/genética , Estudos Retrospectivos , ATPase Trocadora de Sódio-Potássio/genética , Adulto Jovem
2.
Hum Gene Ther ; 32(7-8): 405-419, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577387

RESUMO

Alternating Hemiplegia of Childhood (AHC) is a devastating autosomal dominant disorder caused by ATP1A3 mutations, resulting in severe hemiplegia and dystonia spells, ataxia, debilitating disabilities, and premature death. Here, we determine the effects of delivering an extra copy of the normal gene in a mouse model carrying the most common mutation causing AHC in humans, the D801N mutation. We used an adeno-associated virus serotype 9 (AAV9) vector expressing the human ATP1A3 gene under the control of a human Synapsin promoter. We first demonstrated that intracerebroventricular (ICV) injection of this vector in wild-type mice on postnatal day 10 (P10) results in increases in ouabain-sensitive ATPase activity and in expression of reporter genes in targeted brain regions. We then tested this vector in mutant mice. Simultaneous intracisterna magna and bilateral ICV injections of this vector at P10 resulted, at P40, in reduction of inducible hemiplegia spells, improvement in balance beam test performance, and prolonged survival of treated mutant mice up to P70. Our study demonstrates, as a proof of concept, that gene therapy can induce favorable effects in a disease caused by a mutation of the gene of a protein that is, at the same time, an ATPase enzyme, a pump, and a signal transduction factor.


Assuntos
Dependovirus , Hemiplegia , Animais , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética , Hemiplegia/genética , Hemiplegia/terapia , Camundongos , Mutação , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA