Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Genomics ; 24(1): 258, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173617

RESUMO

BACKGROUND: Bacterial epidemiology needs to understand the spread and dissemination of strains in a One Health context. This is important for highly pathogenic bacteria such as Bacillus anthracis, Brucella species, and Francisella tularensis. Whole genome sequencing (WGS) has paved the way for genetic marker detection and high-resolution genotyping. While such tasks are established for Illumina short-read sequencing, Oxford Nanopore Technology (ONT) long-read sequencing has yet to be evaluated for such highly pathogenic bacteria with little genomic variations between strains. In this study, three independent sequencing runs were performed using Illumina, ONT flow cell version 9.4.1, and 10.4 for six strains of each of Ba. anthracis, Br. suis and F. tularensis. Data from ONT sequencing alone, Illumina sequencing alone and two hybrid assembly approaches were compared. RESULTS: As previously shown, ONT produces ultra-long reads, while Illumina produces short reads with higher sequencing accuracy. Flow cell version 10.4 improved sequencing accuracy over version 9.4.1. The correct (sub-)species were inferred from all tested technologies, individually. Moreover, the sets of genetic markers for virulence, were almost identical for the respective species. The long reads of ONT allowed to assemble not only chromosomes of all species to near closure, but also virulence plasmids of Ba. anthracis. Assemblies based on nanopore data alone, Illumina data alone, and both hybrid assemblies correctly detected canonical (sub-)clades for Ba. anthracis and F. tularensis as well as multilocus sequence types for Br. suis. For F. tularensis, high-resolution genotyping using core-genome MLST (cgMLST) and core-genome Single-Nucleotide-Polymorphism (cgSNP) typing produced highly comparable results between data from Illumina and both ONT flow cell versions. For Ba. anthracis, only data from flow cell version 10.4 produced similar results to Illumina for both high-resolution typing methods. However, for Br. suis, high-resolution genotyping yielded larger differences comparing Illumina data to data from both ONT flow cell versions. CONCLUSIONS: In summary, combining data from ONT and Illumina for high-resolution genotyping might be feasible for F. tularensis and Ba. anthracis, but not yet for Br. suis. The ongoing improvement of nanopore technology and subsequent data analysis may facilitate high-resolution genotyping for all bacteria with highly stable genomes in future.


Assuntos
Bacillus anthracis , Brucella suis , Francisella tularensis , Nanoporos , Francisella tularensis/genética , Brucella suis/genética , Bacillus anthracis/genética , Tipagem de Sequências Multilocus , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
2.
Emerg Infect Dis ; 27(6): 1745-1748, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34013856

RESUMO

We collected 10 Burkholderia mallei isolates from equids in 9 districts in India during glanders outbreaks in 2013-2016. Multilocus variable-number tandem-repeat analysis showed 7 outbreak area-related genotypes. The study highlights the utility of this analysis for epidemiologically tracing of specific B. mallei isolates during outbreaks.


Assuntos
Burkholderia mallei , Mormo , Animais , Burkholderia mallei/genética , Cavalos , Índia , Repetições Minissatélites , Tipagem Molecular
3.
J Clin Microbiol ; 59(7): e0288920, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33827898

RESUMO

Whole-genome sequencing (WGS) has been established for bacterial subtyping and is regularly used to study pathogen transmission, to investigate outbreaks, and to perform routine surveillance. Core-genome multilocus sequence typing (cgMLST) is a bacterial subtyping method that uses WGS data to provide a high-resolution strain characterization. This study aimed at developing a novel cgMLST scheme for Bacillus anthracis, a notorious pathogen that causes anthrax in livestock and humans worldwide. The scheme comprises 3,803 genes that were conserved in 57 B. anthracis genomes spanning the whole phylogeny. The scheme has been evaluated and applied to 584 genomes from 50 countries. On average, 99.5% of the cgMLST targets were detected. The cgMLST results confirmed the classical canonical single-nucleotide-polymorphism (SNP) grouping of B. anthracis into major clades and subclades. Genetic distances calculated based on cgMLST were comparable to distances from whole-genome-based SNP analysis with similar phylogenetic topology and comparable discriminatory power. Additionally, the application of the cgMLST scheme to anthrax outbreaks from Germany and Italy led to a definition of a cutoff threshold of five allele differences to trace epidemiologically linked strains for cluster typing and transmission analysis. Finally, the association of two clusters of B. anthracis with human cases of injectional anthrax in four European countries was confirmed using cgMLST. In summary, this study presents a novel cgMLST scheme that provides high-resolution strain genotyping for B. anthracis. This scheme can be used in parallel with SNP typing methods to facilitate rapid and harmonized interlaboratory comparisons, essential for global surveillance and outbreak analysis. The scheme is publicly available for application by users, including those with little bioinformatics knowledge.


Assuntos
Bacillus anthracis , Bacillus anthracis/genética , Europa (Continente) , Genoma Bacteriano/genética , Alemanha , Humanos , Itália , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único
4.
Molecules ; 24(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835527

RESUMO

Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative agent of melioidosis in humans and animals, are genetically closely related. The high infectious potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human and animals make the differentiation from each other and other Burkholderia species challenging. The increased resistance against many antibiotics implies the need for fast and robust identification methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei, 13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based Raman spectroscopic assay.


Assuntos
Técnicas de Tipagem Bacteriana , Burkholderia mallei/classificação , Aprendizado de Máquina , Análise Espectral Raman , Técnicas de Tipagem Bacteriana/métodos , Análise por Conglomerados , Humanos , Análise Espectral Raman/métodos , Fluxo de Trabalho
5.
Food Microbiol ; 46: 336-341, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475304

RESUMO

The viability of Bacillus anthracis during production and storage of cream cheese and yoghurt was evaluated. Experimental cheeses were manufactured from whole milk inoculated with a suspension of B. anthracis vegetative cells and spores at a final concentration of 10(4) cfu/ml. Lactic acid bacteria (LAB) and lab ferment were used to induce milk ripening and milk coagulation. The pH-value of the contaminated milk dropped below 4.5 within the first 6 h and the amount of LAB increased by approximately 2-logs. During cheese production and storage at 5-9 °C for 24 days no growth of B. anthracis was observed. The amount of vegetative cells and spores fluctuated by 1-log. Inoculation of whole milk with heat-treated spores at 10(4) cfu/ml resulted in a slight increase of vegetative cell counts during the first 6 h. This indicated that germination occurred, but replication of vegetative cells was still inhibited in the produced cheese. Incubation of cheeses at room temperature or heating after milk coagulation strongly reduced the amount of LAB but had no effect on the growth behaviour of B. anthracis. The vegetative cell and spore content remained steady at 10(4) cfu/100 mg. During yoghurt production the pH-value decreased within 5 h below 5 and growth of B. anthracis was inhibited throughout storage. A pH-value of 5 or less is likely a critical factor to control the growth of B. anthracis. However, spores remained viable in experimental cream cheeses and yoghurts and are a potential risk of infection.


Assuntos
Bacillus anthracis/crescimento & desenvolvimento , Laticínios/microbiologia , Iogurte/microbiologia , Animais , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Manipulação de Alimentos , Leite/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento
6.
BMC Vet Res ; 10: 283, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430942

RESUMO

BACKGROUND: Melioidosis caused by Burkholderia (B.) pseudomallei is an endemic zoonotic disease mainly reported from northern Australia and Southeast Asia. In Europe, cases of human melioidosis have been reported only from patients travelling to endemic regions. Besides humans, B. pseudomallei has a very broad host range in domestic and wild animals. There are some reports about importation of B. pseudomallei-infected animals from endemic areas into Europe. The present report describes the first case of B. pseudomallei infection of a pet iguana in Europe. CASE PRESENTATION: In a 5-year-old pet Iguana iguana living in a private household in Prague, Czech Republic, B. pseudomallei was isolated from pus of an abscess. The isolate VB976100 was identified by Vitek®2, MALDI-TOF mass spectrometry and polymerase chain reaction as B. pseudomallei. The molecular typing resulted in multi-locus sequence type 436 hitherto, which has been found only once worldwide in a B. pseudomallei strain isolated in the USA and originating from Guatemala. The identification as internal transcribed spacer type G indicates a close relatedness to strains mainly isolated in the Western Hemisphere. These findings support the hypothesis that the iguana became infected in this region or in a breeding facility through contact to other infected animals. CONCLUSIONS: The present case highlights the risk of importation of the highly pathogenic and zoonotic B. pseudomallei into non-endemic regions through animal trade. Therefore, veterinarians treating animals from these areas and physicians examining patients owning such animals should include melioidosis in differential diagnosis whenever specific symptoms appear. Furthermore, veterinary authorities responsible for supervision of traders and pet shops should be aware of this risk of zoonotic transmission.


Assuntos
Burkholderia pseudomallei/isolamento & purificação , Iguanas/microbiologia , Melioidose/veterinária , Animais , Sequência de Bases , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , República Tcheca , Feminino , Melioidose/microbiologia , Dados de Sequência Molecular , Animais de Estimação/microbiologia , Zoonoses/microbiologia
7.
J Vet Diagn Invest ; 36(2): 283-286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426457

RESUMO

Glanders, caused by Burkholderia mallei, is a zoonotic disease of equids. Serologic testing for glanders is required by disease-free countries before international movement of equids. The World Organisation for Animal Health Terrestrial Manual recommends the complement fixation test (CFT) for clearance of individual animals for movement, but the CFT is prone to false-positive results. A colorimetric western blot (WB) assay was developed and validated to resolve false-positive CFT results; however, that assay is relatively time-consuming, and the interpretation is subjective. We present here a procedurally similar chemiluminescent WB assay that performs comparably to the validated colorimetric WB assay and offers noticeable benefits of decreased time-to-result and greater ease of interpretation.


Assuntos
Burkholderia mallei , Mormo , Doenças dos Cavalos , Cavalos , Animais , Mormo/diagnóstico , Western Blotting/veterinária , Zoonoses , Testes de Fixação de Complemento/veterinária
8.
BMC Microbiol ; 12: 229, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23046611

RESUMO

BACKGROUND: Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. RESULTS: A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. CONCLUSIONS: Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed.


Assuntos
Técnicas Bacteriológicas/métodos , Burkholderia mallei/química , Burkholderia mallei/classificação , Burkholderia pseudomallei/química , Burkholderia pseudomallei/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Burkholderia mallei/isolamento & purificação , Burkholderia pseudomallei/isolamento & purificação , Alemanha , Humanos
9.
BMC Vet Res ; 7: 4, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21247488

RESUMO

BACKGROUND: The in vivo diagnosis of glanders relies on the highly sensitive complement fixation test (CFT). Frequently observed false positive results are troublesome for veterinary authorities and cause financial losses to animal owners. Consequently, there is an urgent need to develop a test with high specificity. Hence, a Western blot assay making use of a partly purified lipopolysaccaride (LPS) containing antigen of three Burkholderia mallei strains was developed. The test was validated investigating a comprehensive set of positive and negative sera obtained from horses and mules from endemic and non endemic areas. RESULTS: The developed Western blot assay showed a markedly higher diagnostic specificity when compared to the prescribed CFT and therefore can be used as a confirmatory test. However, the CFT remains the test of choice for routine testing of glanders due to its high sensitivity, its feasibility using standard laboratory equipment and its worldwide distribution in diagnostic laboratories. CONCLUSIONS: The CFT should be amended by the newly validated Western blot to increase the positive likelihood ratio of glanders serodiagnosis in non endemic areas or areas with low glanders prevalence. Its use for international trade of horses and mules should be implemented by the OIE.


Assuntos
Burkholderia mallei/isolamento & purificação , Mormo/diagnóstico , Animais , Anticorpos Antibacterianos/sangue , Western Blotting/veterinária , Mormo/microbiologia , Cavalos , Lipopolissacarídeos/química
10.
Pathogens ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208761

RESUMO

Brucellosis is a highly contagious zoonosis that occurs worldwide. Whole-genome sequencing (WGS) has become a widely accepted molecular typing method for outbreak tracing and genomic epidemiology of brucellosis. Twenty-nine Brucella spp. (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were isolated from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats originating from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR. Illumina MiSeq® was used to sequence the 29 Brucella isolates. Using MLST typing, ST11 and ST1 were identified among B. melitensis and B. abortus, respectively. Brucella abortus and B. melitensis isolates were divided into two main clusters (clusters 1 and 2) containing two and nine distinct genotypes by core-genome SNP analysis, respectively. The genotypes were irregularly distributed over time and space in the study area. Both Egyptian B. abortus and B. melitensis isolates proved to be genomically unique upon comparison with publicly available sequencing from strains of neighboring Mediterranean, African, and Asian countries. The antimicrobial resistance mechanism caused by mutations in rpoB, gyrA, and gyrB genes associated with rifampicin and ciprofloxacin resistance were identified. To the best of our knowledge, this is the first study investigating the epidemiology of Brucella isolates from livestock belonging to different localities in Egypt based on whole genome analysis.

11.
Front Vet Sci ; 7: 594498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344532

RESUMO

Bovine brucellosis is a global zoonosis of public health importance. It is an endemic disease in many developing countries including Pakistan. This study aimed to estimate the seroprevalence and molecular detection of bovine brucellosis and to assess the association of potential risk factors with test results. A total of 176 milk and 402 serum samples were collected from cattle and buffaloes in three districts of upper Punjab, Pakistan. Milk samples were investigated using milk ring test (MRT), while sera were tested by Rose-Bengal plate agglutination test (RBPT) and indirect enzyme-linked immunosorbent assay (i-ELISA). Real-time PCR was used for detection of Brucella DNA in investigated samples. Anti-Brucella antibodies were detected in 37 (21.02%) bovine milk samples using MRT and in 66 (16.4%) and 71 (17.7%) bovine sera using RBPT and i-ELISA, respectively. Real-time PCR detected Brucella DNA in 31 (7.71%) from a total of 402 bovine sera and identified as Brucella abortus. Seroprevalence and molecular identification of bovine brucellosis varied in some regions in Pakistan. With the use of machine learning, the association of test results with risk factors including age, animal species/type, herd size, history of abortion, pregnancy status, lactation status, and geographical location was analyzed. Machine learning confirmed a real observation that lactation status was found to be the highest significant factor, while abortion, age, and pregnancy came second in terms of significance. To the authors' best knowledge, this is the first time to use machine learning to assess brucellosis in Pakistan; this is a model that can be applied for other developing countries in the future. The development of control strategies for bovine brucellosis through the implementation of uninterrupted surveillance and interactive extension programs in Pakistan is highly recommended.

12.
Microorganisms ; 8(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668648

RESUMO

Brucellosis is one of the most important worldwide zoonoses of many countries including Egypt. Camel brucellosis has not gained much attention in Egypt yet. This study is focused on the three governorates with the highest camel populations and the largest camel markets in the country to determine the disease seroprevalence and identify the Brucella species in local camel holdings. In total, 381 serum samples were collected from male and female camels from Giza, Aswan, and Al-Bahr Al-Ahmar (the Red Sea) governorates. Samples were serologically examined using the Rose-Bengal plate test (RBPT), indirect ELISA (i-ELISA), competitive ELISA (c-ELISA) and complement fixation test (CFT). Brucella antibodies were detected in 59 (15.5%), 87 (22.8%), 77 (20.2%) and 118 (31.0%) of sera by RBPT, i-ELISA, c-ELISA and CFT, respectively. Using real-time PCR, Brucella DNA was amplified in 32 (8.4%) seropositive samples including Brucella abortus (25/32), Brucella suis (5/32) and Brucella melitensis (2/32), defining a complex epidemiological status. To the best of our knowledge, this is the first study reporting Brucella suis DNA in camel serum. The risk-associated factors including age, sex, breed and geographical distribution were statistically analyzed, showing non-significant association with seroprevalence. The results of this study will raise awareness for camel brucellosis and help develop effective control strategies.

13.
Microorganisms ; 7(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766725

RESUMO

Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt.

14.
Pathogens ; 8(4)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756893

RESUMO

Brucellosis is considered as endemic disease of animals and humans since thousands of years in Egypt. However, brucellosis in pigs has never been reported in Egypt. Thus, serological and molecular assays were applied to detect anti-Brucella antibodies and DNA in serum samples collected from pigs. In total 331 blood samples collected from male and female pigs at slaughterhouses of Cairo and Giza governorates were investigated using Brucella c- and i-ELISA and Brucella real-time PCR. Anti-Brucella antibodies were detected in 16 (4.83%) and 36 (10.8%) sera by i-ELISA and c-ELISA, respectively. Brucella DNA was detected in 10 (3.02%) seropositive samples and identified as Brucella melitensis (7/10) and Brucella suis (3/10). A higher prevelance was found in boars. This is the first study investigating pig brucellosis in Egypt. The results of this study will raise awareness for brucellosis in these farm animals and will help to develop effective control strategies.

15.
Genome Announc ; 5(40)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28982993

RESUMO

Bacillus anthracis is a zoonotic agent causing anthrax, a notifiable disease in animals. The last anthrax outbreak among cattle in Germany occurred in April 2014 in Saxony-Anhalt. Here we report a high-quality genome sequence of the Bacillus anthracis strain 14RA5914 Dobichau isolated from the spleen of a dead cow.

16.
Genome Announc ; 5(10)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28280033

RESUMO

Burkholderia pseudomallei was isolated from pus from an abscess of a pet iguana living in a private household in Prague, Czech Republic. This paper presents the complete genome sequence of B. pseudomallei strain VB976100.

17.
Genome Announc ; 5(14)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385832

RESUMO

Burkholderia mallei is a Gram-negative coccobacillus which causes glanders-a fatal disease of equines that may occasionally be transmitted to humans. Several cases of outbreaks have been reported from India since 2006. This paper presents draft genome sequences of two B. mallei strains isolated from equines affected by glanders in India.

18.
Genome Announc ; 4(6)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908988

RESUMO

Burkholderia mallei is a zoonotic agent causing glanders, a notifiable disease in equines. During the past decades glanders emerged, and the Kingdom of Bahrain reported outbreaks to the World Organization of Animal Health in 2010 and 2011. This paper presents the complete genome sequence of the Burkholderia mallei strain 11RR2811 Bahrain1.

19.
J Virol Methods ; 223: 88-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26235236

RESUMO

A total of 136 rotavirus positive samples from diarrhoeic animals of different species were submitted for isolation and cultural propagation of rotavirus on MA-104 cells. The samples were collected from animals with diarrhoea, between 1980 and 2010, originating from herds or farms located in several parts of Germany. Rotaviruses of species A were isolated from 102 faecal samples in cultures of MA-104 cells under the following conditions: pre-treatment of virus with trypsin, incorporation of trypsin into culture medium, use of roller cultures, and centrifugation of the samples on the cells. The cell culture adapted viruses produced a cytopathic effect, accompanied by the release of cells from the glass surface of the cultivation vessels. After 10 passages the virus isolates yielded titres between 10(5.5) and 10(7.5)ml(-1) TCID50. Isolation and serial propagation of the virus in MA-104 cells was confirmed by immunofluorescence assay, transmission electron microscopy, and polyacrylamide-gel electrophoresis of viral dsRNA. Eight (5.9%) of the electrophoretic profiles were characteristic of species B or D rotaviruses, which were not replicated in MA-104 cells.


Assuntos
Fezes/virologia , Infecções por Rotavirus/veterinária , Rotavirus/crescimento & desenvolvimento , Rotavirus/isolamento & purificação , Cultura de Vírus/métodos , Animais , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral , Infecções por Rotavirus/virologia , Inoculações Seriadas , Carga Viral
20.
Vet Microbiol ; 179(3-4): 168-76, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26223422

RESUMO

Rotaviruses (RVs) are a major cause of neonatal diarrhoea in humans and animals worldwide. In this study, 425 faecal samples were collected between 1999 and 2013 from diarrhoeic livestock and companion animals at different locations in Germany and tested for RVs. A previously published real-time RT-PCR assay was optimized for detection of a larger variety of RV species A (RVA) strains, and real-time RT-PCR assays for detection of RV species B (RVB) and C (RVC) were newly developed. The detection limits of the assays were 1.54×10(2), 3.95×10(2) and 3.60×10(3) genome copies for RVA, RVB and RVC, respectively. RVA was identified in 85.2% of bovine samples, 51.2% of porcine samples, 50.0% of feline samples, 43.2% of equine samples and 39.7% of canine samples. RVB was found in 3.0% of bovine samples, 2.7% of equine samples and 1.6% of porcine samples. RVC was detected in 31.0% of porcine samples, 21.7% of feline samples, 9.0% of canine samples and 6.0% of bovine samples. For genotyping, 101 RVA-positive bovine samples were further analysed by semi-nested RT-PCR. Genotype combination G6P[5] was most frequently detected (67.3% of samples), followed by G6P[11] (13.9%), G10P[5] (4.0%), G8P[11] (3.0%), G6P[1] (1.0%), and G10P[11] (1.0%). Mixed RVA infections were detected in 5.9% of samples; no or incomplete typing was possible in 4.0% of the samples. This first overview on RV species and RVA genotypes in diarrhoeic livestock and companion animals from Germany indicates a broad circulation of a large variety of RVs.


Assuntos
Doenças dos Animais/virologia , Infecções por Rotavirus/veterinária , Rotavirus/isolamento & purificação , Doenças dos Animais/epidemiologia , Animais , Animais Domésticos , Sequência de Bases , Gatos , Bovinos , Coinfecção/veterinária , Diarreia/epidemiologia , Diarreia/veterinária , Diarreia/virologia , Cães , Fezes/virologia , Genótipo , Alemanha/epidemiologia , Cavalos , Mamíferos , Dados de Sequência Molecular , Animais de Estimação , Filogenia , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Alinhamento de Sequência , Análise de Sequência de DNA/veterinária , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA